Volume 16, Issue 2 (Mar-Apr 2022)                   mljgoums 2022, 16(2): 21-26 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Jokar M H, Mohamadkhani F, Moradzadeh M, Beygi S, Mohamadkhani A. Nickel Nanoparticles/Recycled Polyethylene Terephthalate Nanofibers Reduce AlgD Expression in Pseudomonas aeruginosa. mljgoums 2022; 16 (2) :21-26
URL: http://mlj.goums.ac.ir/article-1-1352-en.html
1- Golestan Rheumatology Research Center, Sayad Shirazi Hospital, Golestan University of Medical Sciences, Gorgan, Iran
2- Department of Textile Engineering, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
3- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
4- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran , ashraf_mohamadkhani@yahoo.com
Abstract:   (2386 Views)
Background and objectives: Recycled polyethylene terephthalate (RPET) nanofibers have become an important part of human life, with a continuous increase in their production and consumption. Herein, the antibacterial activity of nickel nanoparticles/recycled polyethylene terephthalate nanofibers (NiNP/RPET NF web) was evaluated by analyzing alginate expression in Pseudomonas aeruginosa, as an opportunistic microorganism.
Methods: NiNPs were synthesized and NiNP/RPET NF was produced by adding 25 μg/ml of NiNP to 10% solutions of RPET at a weight ratio of 3%. After exposing P. aeruginosa (PA01) to NiNP/RPET NF, the biofilm-forming capacity was determined and real-time PCR was performed to measure algD expression.
Results: Treatment with 25 μg/ml of NiNP/RPET NF reduced growth of P. aeruginosa on Mueller Hinton agar but did not result in complete inhibition. The biofilm optical density (550 nm) was 0.464 ± 0.021 after treatment with NiNP/RPET NF and 0.082± 0.011 in the absence of NiNP/RPET NF. This indicates the significant reduction of biofilm formation after exposure to NiNP/RPET NF (p=0.01). In addition, a 0.6-fold (p=0.03) reduction in alginate expression was detected by real-time quantitative real-time PCR.
Conclusion: Our results indicate the potential of NiNP/RPET NF for application in nano-based antibacterial medical systems.
Full-Text [PDF 767 kb]   (819 Downloads) |   |   Full-Text (HTML)  (1129 Views)  
Research Article: Original Paper | Subject: Microbiology
Received: 2020/12/20 | Accepted: 2021/02/7 | Published: 2022/03/7 | ePublished: 2022/03/7

References
1. Mohammadkhani F, Montazer M, Latifi M. Microwave absorption and photocatalytic properties of magnetic nickel nanoparticles/recycled PET nanofibers web. The Journal of The Textile Institute. 2019;110(11):1606-14 [DOI:10.1080/00405000.2019.1612501] [Google Scholar]
2. Mohammadkhani F, Montazer M, Latifi M. Microwave absorption characterization and wettability of magnetic nano iron oxide/recycled PET nanofibers web. The Journal of The Textile Institute 2019;110(7):989-99 [DOI:10.1080/00405000.2018.1559908] [Google Scholar]
3. Corona-Nakamura AL, Miranda-Novales MG, Leaños-Miranda B, Portillo-Gómez L, Hernández-Chávez A, Anthor-Rendón J, et al. Epidemiologic Study of Pseudomonas aeruginosa in critical patients and reservoirs. Arch Med Res. 2001 May-Jun;32(3):238-42. [View at Publisher] [DOI:10.1016/S0188-4409(01)00267-3] [PubMed] [Google Scholar]
4. Yakupogullari Y, Otlu B, Dogukan M, Gursoy C, Korkmaz E, Kizirgil A, et al. Investigation of a nosocomial outbreak by alginate-producing pan-antibiotic-resistant Pseudomonas aeruginosa. Am J Infect Control. 2008 ;36(10):e13-8. [View at Publisher] [DOI:10.1016/j.ajic.2008.07.006] [PubMed] [Google Scholar]
5. Fuentefria DB, Ferreira AE, Corção G. Antibiotic-resistant Pseudomonas aeruginosa from hospital wastewater and superficial water: are they genetically related? J Environ Manage. 2011 ;92(1):250-5. [View at Publisher] [DOI:10.1016/j.jenvman.2010.09.001] [PubMed] [Google Scholar]
6. Saffari M, Karami S, Firoozeh F, Sehat M. Evaluation of biofilm-specific antimicrobial resistance genes in Pseudomonas aeruginosa isolates in Farabi Hospital. J Med Microbiol. 2017 ;66(7):905-909. [DOI:10.1099/jmm.0.000521] [PubMed] [Google Scholar]
7. Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306 [DOI:10.1101/cshperspect.a010306] [Google Scholar]
8. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE. Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol. 2013 ;16(5):580-9. [View at Publisher] [DOI:10.1016/j.mib.2013.06.013] [PubMed] [Google Scholar]
9. Khashan KS, Sulaiman GM, Abdul Ameer FA, Napolitano G. Synthesis, characterization and antibacterial activity of colloidal NiO nanoparticles. Pak J Pharm Sci. 2016 ;29(2):541-6. [PubMed] [Google Scholar]
10. Golkhatmi FM, Bahramian B, Mamarabadi M. Application of surface modified nano ferrite nickel in catalytic reaction (epoxidation of alkenes) and investigation on its antibacterial and antifungal activities. Mater Sci Eng C Mater Biol Appl. 2017;78:1-11 [View at Publisher] [DOI:10.1016/j.msec.2017.04.025] [PubMed] [Google Scholar]
11. De Stefano D, Carnuccio R, Maiuri MC. Nanomaterials toxicity and cell death modalities. J Drug Deliv. 2012;2012:167896 [DOI:10.1155/2012/167896] [PubMed] [Google Scholar]
12. Khan ST, Ahamed M, Alhadlaq HA, Musarrat J, Al-Khedhairy A. Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Archives of oral biology. 2013;58(12):1804-11 [View at Publisher] [DOI:10.1016/j.archoralbio.2013.09.011] [PubMed] [Google Scholar]
13. Imran Din M, Rani A. Recent Advances in the Synthesis and Stabilization of Nickel and Nickel Oxide Nanoparticles: A Green Adeptness. Int J Anal Chem. 2016;2016:3512145 [DOI:10.1155/2016/3512145] [PubMed] [Google Scholar]
14. Sportelli MC, Izzi M, Kukushkina EA, Hossain SI, Picca RA, Ditaranto N, et al. Can Nanotechnology and Materials Science Help the Fight against SARS-CoV-2? Nanomaterials (Basel). 2020;10(4) [View at Publisher] [DOI:10.3390/nano10040802] [PubMed] [Google Scholar]
15. Mohamadkhani A, Poustchi H. Repository of Human Blood Derivative Biospecimens in Biobank: Technical Implications. Middle East J Dig Dis. 2015 ;7(2):61-8. PMID: 26106464; [View at Publisher] [PubMed] [Google Scholar]
16. Wijesinghe G, Dilhari A, Gayani B, Kottegoda N, Samaranayake L, Weerasekera M. Influence of Laboratory Culture Media on in vitro Growth, Adhesion, and Biofilm Formation of Pseudomonas aeruginosa and Staphylococcus aureus. Medical principles and practice : international journal of the Kuwait University, Health Science Centre. 2019;28(1):28-35 [DOI:10.1159/000494757] [PubMed] [Google Scholar]
17. Jin Y, Samaranayake LP, Samaranayake Y, Yip HK. Biofilm formation of Candida albicans is variably affected by saliva and dietary sugars. Arch Oral Biol. 2004 ;49(10):789-98. [View at Publisher] [DOI:10.1016/j.archoralbio.2004.04.011] [PubMed] [Google Scholar]
18. Edwards KJ, Saunders NA. Real-time PCR used to measure stress-induced changes in the expression of the genes of the alginate pathway of Pseudomonas aeruginosa. J Appl Microbiol. 2001 ;91(1):29-37. [View at Publisher] [DOI:10.1046/j.1365-2672.2001.01339.x] [PubMed] [Google Scholar]
19. Pfaffl MW. Relative quantification. Real-time PCR. 2006;63:63-82 [Google Scholar]
20. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004;42(5):2074-9 [View at Publisher] [DOI:10.1128/JCM.42.5.2074-2079.2004] [PubMed] [Google Scholar]
21. Mhaske AR, Shetty PC, Bhat NS, Ramachandra CS, Laxmikanth SM, Nagarahalli K, et al. Antiadherent and antibacterial properties of stainless steel and NiTi orthodontic wires coated with silver against Lactobacillus acidophilus--an in vitro study. Prog Orthod. 2015;16:40 [View at Publisher] [DOI:10.1186/s40510-015-0110-0] [PubMed] [Google Scholar]
22. Bell IR, Ives JA, Jonas WB. Nonlinear effects of nanoparticles: biological variability from hormetic doses, small particle sizes, and dynamic adaptive interactions. Dose Response. 2013 7;12(2):202-32. [DOI:10.2203/dose-response.13-025.Bell] [PubMed] [Google Scholar]
23. Ezhilarasi AA, Vijaya JJ, Kaviyarasu K, Maaza M, Ayeshamariam A, Kennedy LJ. Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B. 2016 ;164:352-360. [View at Publisher] [DOI:10.1016/j.jphotobiol.2016.10.003] [PubMed] [Google Scholar]
24. Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995 ;15(3):162-8. [View at Publisher] [DOI:10.1007/BF01569821] [PubMed] [Google Scholar]
25. Linker A, Jones RS. A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem. 1966 25;241(16):3845-51. [View at Publisher] [DOI:10.1016/S0021-9258(18)99848-0] [PubMed] [Google Scholar]
26. Li Y, Zhang W, Niu J, Chen Y. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano. 2012 26;6(6):5164-73. [DOI:10.1021/nn300934k] [PubMed] [Google Scholar]
27. Capeness MJ, Edmundson MC, Horsfall LE. Nickel and platinum group metal nanoparticle production by Desulfovibrio alaskensis G20. N Biotechnol. 2015 25;32(6):727-31. [View at Publisher] [DOI:10.1016/j.nbt.2015.02.002] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.