Volume 11, Issue 3 (May-Jun 2017)                   mljgoums 2017, 11(3): 35-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Shaykh Baygloo N, Bouzari M, Rahimi F. Profile of Eight Prophage Sequences Present in the Genomes of Different Acinetobacter baumannii Strains. mljgoums 2017; 11 (3) :35-41
URL: http://mlj.goums.ac.ir/article-1-983-en.html
1- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran
2- Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran , bouzari@sci.ui.ac.ir
Abstract:   (11192 Views)
ABSTRACT
          Background and Objective: Prophage sequences are major contributors to interstrain variations within the same bacterial species. Acinetobacter baumannii is a gram-negative bacterium that causes a wide range of nosocomial infections, especially in intensive care unit inpatients. Prophage sequences constitute a considerable proportion of several sequenced complete genomes of A. baumannii. The aim of this study was to investigate the presence of prophage sequences in A. baumannii strains isolated from burn patients, and compare the results with other studies.
          Methods: Presence of eight prophage sequences was investigated in the genome of ten multi-drug resistant A. baumannii isolates obtained from burn sites of 10 burn patients in a hospital in Isfahan, Iran. PCR and sequencing were performed to detect the prophage sequences. The presence of the eight prophage sequences in the genome of A. baumannii strains from other studies was investigated by BLAST analysis of whole nucleotide sequence of prophage sequences.
          Results: The isolates in the present study had different prophage sequence profiles. Two isolates did not contain any of the sequences, while two isolates contained three and two of the prophage sequences. Other isolates contained only one sequence. The prophage sequence profiles observed in this study were not found in A. baumannii isolates from other studies.
          Conclusion: The results of this study indicate that the prophage sequences profile can be useful for studying the epidemiology of A. baumannii strains.
          Keywords: Acinetobacter baumannii, genome, prophage sequences.
Full-Text [PDF 457 kb]   (1363 Downloads)    
Research Article: Original Paper |
Received: 2017/08/8 | Accepted: 2017/08/8 | Published: 2017/08/8 | ePublished: 2017/08/8

References
1. Bohlin J, van Passel MW, Snipen L, Kristoffersen AB, Ussery D, Hardy SP, et al. Relative entropy differences in bacterial chromosomes, plasmids, phages and genomic islands. BMC genomics. 2012; 13(1): 66. doi: 10.1186/1471-2164-13-66. [DOI:10.1186/1471-2164-13-66]
2. Brüssow H, Canchaya C, Hardt W-D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol Mol Biol Rev. 2004; 68(3): 560-602. [DOI:10.1128/MMBR.68.3.560-602.2004]
3. Canchaya C, Fournous G, Chibani-Chennoufi S, Dillmann M-L, Brüssow H. Phage as agents of lateral gene transfer. Curr Opin Microbiol. 2003; 6(4): 417-24. [DOI:10.1016/S1369-5274(03)00086-9]
4. Srividhya K, Alaguraj V, Poornima G, Kumar D, Singh G, Raghavenderan L, et al. Identification of prophages in bacterial genomes by dinucleotide relative abundance difference. PLoS One. 2007; 2(11): e1193. [DOI:10.1371/journal.pone.0001193]
5. Bondy-Denomy J, Davidson AR. When a virus is not a parasite: the beneficial effects of prophages on bacterial fitness. J Microbiol. 2014; 52(3): 235-42. doi: 10.1007/s12275-014-4083-3. [DOI:10.1007/s12275-014-4083-3]
6. Piekarowicz A, Kłyż A, Majchrzak M, Adamczyk-Popławska M, Maugel TK, Stein DC. Characterization of the dsDNA prophage sequences in the genome of Neisseria gonorrhoeae and visualization of productive bacteriophage. BMC Microbiol. 2007; 7(1):66. doi: 10.1186/1471-2180-7-66. [DOI:10.1186/1471-2180-7-66]
7. Wang X, Kim Y, Ma Q, Hong SH, Pokusaeva K, Sturino JM, et al. Cryptic prophages help bacteria cope with adverse environments. Nat Commun. 2010;1:147. doi:10.1038/ncomms1146. [DOI:10.1038/ncomms1146]
8. Antunes L, Visca P, Towner KJ. Acinetobacter baumannii: evolution of a global pathogen. Pathog Dis. 2014;71(3):292-301. DOI:10.1111/2049-632X.12125. [DOI:10.1111/2049-632X.12125]
9. Camp C, Tatum OL. A review of Acinetobacter baumannii as a highly successful pathogen in times of war. Lab Med. 2010; 41(11): 649-57. [DOI:10.1309/LM90IJNDDDWRI3RE]
10. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol. 2007; 5(12): 939-51. DOI:10.1038/nrmicro1789. [DOI:10.1038/nrmicro1789]
11. Towner K. Acinetobacter: an old friend, but a new enemy. J Hosp Infect. 2009; 73(4): 355-63. [DOI:10.1016/j.jhin.2009.03.032]
12. Vallenet D, Nordmann P, Barbe V, Poirel L, Mangenot S, Bataille E, et al. Comparative analysis of Acinetobacters: three genomes for three lifestyles. PloS One. 2008; 3(3): e1805. [DOI:10.1371/journal.pone.0001805]
13. Adams MD, Goglin K, Molyneaux N, Hujer KM, Lavender H, Jamison JJ, et al. Comparative genome sequence analysis of multidrug-resistant Acinetobacter baumannii. J Bacteriol. 2008; 190(24): 8053-64. doi: 10.1128/JB.00834-08. [DOI:10.1128/JB.00834-08]
14. Iacono M, Villa L, Fortini D, Bordoni R, Imperi F, Bonnal RJ, et al. Whole-genome pyrosequencing of an epidemic multidrug-resistant Acinetobacter baumannii strain belonging to the European clone II group. Antimicrob Agents Chemother. 2008; 52(7): 2616-25. [DOI:10.1128/AAC.01643-07]
15. Golemboski D, Eardly BD. Draft genome sequences of respiratory and urinary tract isolates of Acinetobacter baumannii from the same patient. Genome Announc. 2014; 2(4): e00692-14. [DOI:10.1128/genomeA.00692-14]
16. Huang H, Dong Y, Yang Z-L, Luo H, Zhang X, Gao F. Complete Sequence of pABTJ2, A Plasmid from Acinetobacter baumannii MDR-TJ, Carrying Many Phage-like Elements. Genomics Proteomics Bioinformatics. 2014; 12(4): 172-7. [DOI:10.1016/j.gpb.2014.05.001]
17. Shaykh Baygloo N, Bouzari M, Rahimi F, Abedini F, Yadegari S, Soroushnia M, et al. Identification of Genomic Species of Acinetobacter Isolated from Burns of ICU Patients. Archives of Iranian Medicine (AIM). 2015; 18(10): 638-42.
18. Peng F, Mi Z, Huang Y, Yuan X, Niu W, Wang Y, et al. Characterization, sequencing and comparative genomic analysis of vB_AbaM-IME-AB2, a novel lytic bacteriophage that infects multidrug-resistant Acinetobacter baumannii clinical isolates. BMC Microbiol. 2014; 14(1): 181. doi: 10.1186/1471-2180-14-181. [DOI:10.1186/1471-2180-14-181]
19. Balcazar JL. Bacteriophages as vehicles for antibiotic resistance genes in the environment. PLoS Pathog. 2014; 10(7): e1004219. [DOI:10.1371/journal.ppat.1004219]
20. Brabban A, Hite E, Callaway T. Evolution of foodborne pathogens via temperate bacteriophage-mediated gene transfer. Foodborne Pathog Dis. 2005; 2(4): 287-303. [DOI:10.1089/fpd.2005.2.287]
21. Volkova VV, Lu Z, Besser T, Gröhn YT. Modeling the Infection Dynamics of Bacteriophages in Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial Gene Spread. Appl Environ Microbiol. 2014; 80(14): 4350-62. [DOI:10.1128/AEM.00446-14]
22. Zhu L, Yan Z, Zhang Z, Zhou Q, Zhou J, Wakeland EK, et al. Complete genome analysis of three Acinetobacter baumannii clinical isolates in China for insight into the diversification of drug resistance elements. PloS One. 2013; 8(6): e66584. [DOI:10.1371/journal.pone.0066584]
23. Liou M-L, Liu C-C, Lu C-W, Hsieh M-F, Chang K-C, Kuo H-Y, et al. Genome sequence of Acinetobacter baumannii TYTH-1. J Bacteriol. 2012;194(24):6974. doi: 10.1128/JB.01860-12. [DOI:10.1128/JB.01860-12]
24. Smith MG, Gianoulis TA, Pukatzki S, Mekalanos JJ, Ornston LN, Gerstein M, et al. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes Dev. 2007; 21(5): 601-14. DOI:10.1101/gad.1510307. [DOI:10.1101/gad.1510307]
25. Chen C-C, Lin Y-C, Sheng W-H, Chen Y-C, Chang S-C, Hsia K-C, et al. Genome sequence of a dominant, multidrug-resistant Acinetobacter baumannii strain, TCDC-AB0715. J Bacteriol. 2011;193(9): 2361-2. doi: 10.1128/JB.00244-11. [DOI:10.1128/JB.00244-11]
26. Mussi MA, Limansky AS, Relling V, Ravasi P, Arakaki A, Actis LA, et al. Horizontal gene transfer and assortative recombination within the Acinetobacter baumannii clinical population provides genetic diversity at the single carO gene, encoding a major outer membrane protein channel. J Bacteriol. 2011;193(18): 4736-48. [DOI:10.1128/JB.01533-10]
27. Fernando D, Zhanel G, Kumar A. Antibiotic resistance and expression of resistance-nodulation-division pump-and outer membrane porin-encoding genes in Acinetobacter species isolated from Canadian hospitals. Can J Infect Dis Med Microbiol. 2013; 24(1): 17-21. [DOI:10.1155/2013/696043]
28. Farrugia DN, Elbourne LD, Hassan KA, Eijkelkamp BA, Tetu SG, Brown MH, et al. The complete genome and phenome of a community-acquired Acinetobacter baumannii. PloS One. 2013; 8(3): e58628. [DOI:10.1371/journal.pone.0058628]
29. Tada T, Miyoshi-Akiyama T, Shimada K, Shimojima M, Kirikae T. Dissemination of 16S rRNA methylase ArmA-producing Acinetobacter baumannii and emergence of OXA-72 carbapenemase coproducers in Japan. Antimicrob Agents Chemother. 2014; 58(5): 2916-20. doi: 10.1128/AAC.01212-13. [DOI:10.1128/AAC.01212-13]
30. Gao F, Wang Y, Liu Y-J, Wu X-M, Lv X, Gan Y-R, et al. Genome sequence of Acinetobacter baumannii MDR-TJ. J Bacteriol. 2011; 193(9): 2365-6. [DOI:10.1128/JB.00226-11]
31. Brouqui P, Lascola B, Roux V, Raoult D. Chronic Bartonella quintana bacteremia in homeless patients. N Engl J Med. 1999; 340(3): 184-9. DOI:10.1056/NEJM199901213400303. [DOI:10.1056/NEJM199901213400303]
32. Merino M, Alvarez-Fraga L, Gómez M, Aransay A, Lavín J, Chaves F, et al. Complete genome sequence of the multiresistant Acinetobacter baumannii strain AbH12O-A2, isolated during a large outbreak in Spain. Genome Announc. 2014; 2(6): e01182-14. doi: 10.1128/genomeA.01182-14. [DOI:10.1128/genomeA.01182-14]
33. Lee HW, Koh Y, Kim J, Lee JC, Lee YC, Seol SY, et al. Capacity of multidrug-resistant clinical isolates of Acinetobacter baumannii to form biofilm and adhere to epithelial cell surfaces. Clin Microbiol Infect. 2008; 14(1): 49-54. [DOI:10.1111/j.1469-0691.2007.01842.x]
34. Lim YM, Shin KS, Kim J. Distinct antimicrobial resistance patterns and antimicrobial resistance-harboring genes according to genomic species of Acinetobacter isolates. J Clin Microbiol. 2007; 45(3): 902-5. DOI:10.1128/JCM.01573-06. [DOI:10.1128/JCM.01573-06]
35. Park JY, Kim S, Kim S-M, Cha SH, Lim S-K, Kim J. Complete genome sequence of multidrug-resistant Acinetobacter baumannii strain 1656-2, which forms sturdy biofilm. J Bacteriol. 2011; 193(22): 6393-4. doi: 10.1128/JB.06109-11. [DOI:10.1128/JB.06109-11]
36. Zhou H, Zhang T, Yu D, Pi B, Yang Q, Zhou J, et al. Genomic analysis of the multidrug-resistant Acinetobacter baumannii strain MDR-ZJ06 widely spread in China. Antimicrob Agents Chemother. 2011; 55(10): 4506-12. doi: 10.1128/AAC.01134-10. [DOI:10.1128/AAC.01134-10]
37. Jung J, Baek J-H, Park W. Complete genome sequence of the diesel-degrading Acinetobacter sp. strain DR1. J Bacteriol. 2010; 192(18): 4794-5. doi: 10.1128/JB.00722-10. [DOI:10.1128/JB.00722-10]
38. Yee L, Hosoyama A, Ohji S, Tsuchikane K, Shimodaira J, Yamazoe A, et al. Complete genome sequence of a dimethyl sulfide-utilizing bacterium, Acinetobacter guillouiae strain 20B (NBRC 110550). Genome Announc. 2014; 2(5): e01048-14. doi: 10.1128/genomeA.01048-14. [DOI:10.1128/genomeA.01048-14]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.