Volume 18, Issue 2 (Mar-Apr 2024)                   mljgoums 2024, 18(2): 11-15 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kottahachchi D, Deshani Hewapathirana T, Chandula Perera T, Suresh S. The potential of mononuclear cells as a predictive marker for the level of stem cells in autologous peripheral blood stem cell transplantation in Multiple Myeloma: A Review Article. mljgoums 2024; 18 (2) :11-15
URL: http://mlj.goums.ac.ir/article-1-1626-en.html
1- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka , darsha.uda@kdu.ac.lk
2- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, General Sir John Kotelawala Defence University, Rathmalana, Sri Lanka
3- Department of Haematology Apeksha Hospital, Maharagama, Sri Lanka
Abstract:   (307 Views)
Multiple myeloma (MM) is a plasma cell neoplasm that is characterized by the clonal proliferation of malignant plasma cells in the bone marrow. It is considered the second most common hematological malignancy which accounts for approximately 1% - 2% of all cancers and among 10% of hematological malignancies. Autologous peripheral blood stem cell Transplantation (PBSCT) is the best treatment for MM. Since the optimum harvested stem cell yield is a crucial factor for sufficient engraftment, the enumeration of Mononuclear cell (MNC) count in peripheral blood and harvested CD 34+ stem cell count can be considered as the best predictive markers for the best timing of apheresis which positively correlates with engraftment outcome of PBSCT.
MNC count can be obtained using either a hematological analyzer or peripheral blood smear while flow cytometry is the advanced technology that can be used to enumerate CD 34+ stem cell count other than peripheral blood smear. The unavailability of a flow cytometer, the expensiveness of this method, and the lack of trained personnel regarding this new technology, especially in lower-middle-income countries cause disturbance in the enumeration of stem cells. In such a situation, this review describes the importance of establishing an association between peripheral blood MNCs and harvested CD 34+ cells. Furthermore, this association facilitates conducting effective PBSCT for MM patients even in the absence of a flow cytometer and eventually, it focuses on decentralizing the treatment of PBSCT.
Full-Text [PDF 442 kb]   (74 Downloads) |   |   Full-Text (HTML)  (49 Views)  
Research Article: Review Article | Subject: Molecular Medicine
Received: 2023/02/14 | Accepted: 2024/02/28 | Published: 2024/04/30 | ePublished: 2024/04/30

References
1. Devenney B, Erickson C. Multiple myeloma: an overview. Clin J Oncol Nurs. 2004; 8(4): 401-5. [View at Publisher] [DOI] [PMID] [Google Scholar]
2. Sridevi HB, Rai S, Suresh PK, Somesh MS, Minal J. Pancytopenia in Multiple Myeloma- An Enigma: Our Experience from Tertiary Care Hospital. J Clin Diagn Res. 2015; 9(11): EC04-6. [View at Publisher] [Google Scholar]
3. Ternák G, Berényi K, Németh B, Szenczi Á, Márovics G, Kiss I. Association of antibiotic-consumption patterns with the prevalence of hematological malignancies in European countries. Sci Rep. 2022; 12(1): 7821. [View at Publisher] [PMID] [Google Scholar]
4. Bell D, Yap K. Multiple myeloma. Radiopaedia.org. 2010. [View at Publisher] [DOI]
5. Kazandijan D. Multiple myeloma epidemiology and survival, a unique malignancy. Semin Oncol. 2016; 43(6): 676-81. [View at Publisher] [DOI:10.1053/j.seminoncol.2016.11.004] [PMID] [Google Scholar]
6. Giudicessi JR, Ackerman MJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Transl Res. 2013; 161(1): 1-14. [View at Publisher] [DOI] [PMID] [Google Scholar]
7. Tonon G. Molecular Pathogenesis of Multiple Myeloma. Hematol Oncol Clin North Am. 2007; 21(6): 985-1006. [View at Publisher] [DOI] [PMID] [Google Scholar]
8. Chng WJ, Glebov O, Bergsagel PL, Kuehl WM. Genetic events in the pathogenesis of multiple myeloma. Best Pract Res Clin Haematol. 2007; 20(4): 571-96. [View at Publisher] [DOI] [PMID] [Google Scholar]
9. Agnarelli A, Chevassut T, Mancini EJ. IRF4 in multiple myeloma-Biology, disease and therapeutic target. Leuk Res. 2018; 72: 52-58. [View at Publisher] [DOI] [PMID] [Google Scholar]
10. Lodé L, Eveillard M, Trichet V, Soussi T, Wuillème S, Richebourg S, et al. Mutations in TP53 are exclusively associated with del(17p) in multiple myeloma. Haematologica. 2010; 95(11): 1973-6. [View at Publisher] [DOI] [PMID] [Google Scholar]
11. Hoffbrand AV, Pettit JE, Moss PAH. Essential Haematology (Essentials). 4th Edition. Wiley-Blackwell Paperback. (2001) [View at Publisher]
12. Subramanian R, Basu D, Dutta TK. Prognostic significance of bone marrow histology in multiple myeloma. Indian J Cancer. 2009; 46(1): 40-5. [View at Publisher] [DOI] [PMID] [Google Scholar]
13. Dispenzieri A, Gertz MA, Therneau TM, Kyle RA. Retrospective cohort study of 148 patients with polyclonal gammopathy. Mayo Clin Proc. 2001; 76(5): 476-87. [View at Publisher] [DOI] [PMID] [Google Scholar]
14. NORD (National Organization for Rare Disorders). Multiple Myeloma. 2022; 1-5. [View at Publisher]
15. International Myeloma Working Group. Criteria for the classification of monoclonal gammopathies, multiple myeloma and related disorders: a report of the International Myeloma Working Group. Br J Haematol. 2003; 121(5): 749-57 [View at Publisher] [PMID] [Google Scholar]
16. Rajkumar SV. Updated Diagnostic Criteria and Staging System for Multiple Myeloma. Am Soc Clin Oncol Educ B. 2016; (36): e418-23. [View at Publisher] [DOI] [PMID] [Google Scholar]
17. Samson D, Singer C. Multiple myeloma. Clin Med (Northfield Il). 2001; 1(5): 365-70. [View at Publisher] [DOI:10.7861/clinmedicine.1-5-365] [PMID] [Google Scholar]
18. Palumbo A, Rajkumar SV, San Miguel JF, Larocca A, Niesvizky R, Morgan G, et al. International Myeloma Working Group consensus statement for the management, treatment, and supportive care of patients with myeloma not eligible for standard autologous stem-cell transplantation. J Clin Oncol. 2014; 32(6): 587-600. [View at Publisher] [DOI] [PMID] [Google Scholar]
19. UCSF Helen Diller Family Comprehensive Cancer Center. About Multiple Myeloma . 2022. [View at Publisher]
20. Pratt G, Mead GP, Godfrey KR, Hu Y, Evans ND, Chappell MJ, et al. The tumor kinetics of multiple myeloma following autologous stem cell transplantation as assessed by measuring serum-free light chains. Leuk Lymphoma. 2006; 47(1): 21-8. [View at Publisher] [DOI] [PMID] [Google Scholar]
21. Bradwell AR, Carr-Smith HD, Mead GP, Harvey TC, Drayson MT. Serum test for assessment of patients with Bence Jones myeloma. Lancet. 2003; 361(9356): 489-91. [View at Publisher] [DOI] [PMID] [Google Scholar]
22. Katzman M, George T, Doell H, Danyluk P, Briggs S, Hasegawa W, et al. Combination High-Dose Cyclophosphamide and Bortezomib Is Safe and Effective for Stem Cell Harvesting in Chemotherapy Refractory Multiple Myeloma. Blood. 2006; 108(11): 5459. [View at Publisher] [DOI] [Google Scholar]
23. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK, et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leuk 2009 2312 [Internet]. 2009 Oct 1 [cited 2022 Mar 23];23(12):2210-21. Available from: https://www.nature.com/articles/leu2009174 [View at Publisher] [DOI] [PMID] [Google Scholar]
24. Raje NS, Anaissie E, Kumar SK, Lonial S, Martin T, Gertz MA, et al. Consensus guidelines and recommendations for infection prevention in multiple myeloma: a report from the International Myeloma Working Group. Lancet Haematol. 2022; 9(2): e143-61. [View at Publisher] [DOI] [PMID] [Google Scholar]
25. Rajkumar SV. Treatment of multiple myeloma. Nat Rev Clin Oncol [Internet]. 2011;8(8):479-91. Available from: http://dx.doi.org/10.1038/nrclinonc.2011.63 [View at Publisher] [DOI:10.1038/nrclinonc.2011.63] [PMID] [Google Scholar]
26. Talamo G, Dimaio C, Abbi KKS, Pandey MK, Malysz J, Creer MH, et al. Current role of radiation therapy for multiple myeloma. Front Oncol. 2015; 5(FEB): 40. [View at Publisher] [DOI] [PMID] [Google Scholar]
27. de la Puente P, Muz B, Azab F, Luderer M, Azab AK. Molecularly targeted therapies in multiple myeloma. Leuk Res Treatment. 2014; 2014: 976567. [View at Publisher] [DOI:10.1155/2014/976567] [PMID] [Google Scholar]
28. Geraldes C, Neves M, Chacim S, da Costa FL. Practical Considerations for the Daratumumab Management in Portuguese Routine Clinical Practice: Recommendations From an Expert Panel of Hematologists. Front Oncol. 2022; 11: 817762. [View at Publisher] [DOI] [PMID] [Google Scholar]
29. Bladé J, Rosiñol L, Cibeira MT, Rovira M, Carreras E. Hematopoietic stem cell transplantation for multiple myeloma beyond 2010. Blood. 2010; 115(18): 3655-63. [View at Publisher] [DOI] [PMID] [Google Scholar]
30. Léger CS, Nevill TJ. Hematopoietic stem cell transplantation: A primer for the primary care physician. Cmaj. 2004; 170(10): 1569-77. [View at Publisher] [DOI] [PMID] [Google Scholar]
31. Copelan EA. Hematopoietic stem-cell transplantation. N Engl J Med. 2006; 354(17): 1813-26. [View at Publisher] [PMID] [Google Scholar]
32. Shimosato Y, Tanoshima R, Tsujimoto SI, Takeuchi M, Shiba N, Kobayashi T, Ito S. Allogeneic Bone Marrow Transplantation versus Peripheral Blood Stem Cell Transplantation for Hematologic Malignancies in Children: A Systematic Review and Meta-Analysis. Biol Blood Marrow Transplant. 2020; 26(1): 88-93. [View at Publisher] [DOI] [PMID] [Google Scholar]
33. Passweg JR, Baldomero H, Bader P, Bonini C, Duarte RF, Dufour C, et al. Use of haploidentical stem cell transplantation continues to increase: the 2015 European Society for Blood and Marrow Transplant activity survey report. Bone Marrow Transplant. 2023; 52(6): 811-7. [View at Publisher] [DOI] [PMID] [Google Scholar]
34. Lisenko K, Sauer S, Bruckner T, Egerer G, Goldschmidt H, Hillengass J,et al. High-dose chemotherapy and autologous stem cell transplantation of patients with multiple myeloma in an outpatient setting. BMC Cancer. 2017; 17(1): 151. [View at Publisher] [DOI] [PMID] [Google Scholar]
35. Hutchinson K, Kopko PM, Muto KN, Tuscano J, O'Donnell RT, Holland PV, et al. Early diagnosis and successful treatment of a patient with transfusion-associated GVHD with autologous peripheral blood progenitor cell transplantation. Transfusion. 2002; 42(12): 1567-72. [View at Publisher] [DOI] [PMID] [Google Scholar]
36. Al Hamed R, Bazarbachi AH, Malard F, Harousseau JL, Mohty M. Current status of autologous stem cell transplantation for multiple myeloma. Blood Cancer J. 2019; 9(4): 44. [View at Publisher] [DOI] [PMID] [Google Scholar]
37. Asia Pacific Hospice Palliative Care Network. Cancer Care Association. 2022. [View at Publisher]
38. Allan DS, Keeney M, Howson-Jan K, Popma J, Weir K, Bhatia M, et al. Number of viable CD34(+) cells reinfused predicts engraftment in autologous hematopoietic stem cell transplantation. Bone Marrow Transplant. 2002; 29(12): 967-72. [View at Publisher] [DOI] [PMID] [Google Scholar]
39. Gyurkocza B, Sandmaier BM. Conditioning regimens for hematopoietic cell transplantation: one size does not fit all. Blood. 2014; 124(3): 344-53. [View at Publisher] [DOI] [PMID] [Google Scholar]
40. Garderet L, Beohou E, Caillot D, Stoppa AM, Touzeau C, Chretien ML, et al. Upfront autologous stem cell transplantation for newly diagnosed elder ly multiple myeloma patients: A prospective multicenter study. Haematologica. 2016; 101(11): 1390-7. [View at Publisher] [DOI] [PMID] [Google Scholar]
41. Bolaman AZ, Turgutkaya A, Yavaşoğlu İ. Factors Affecting Time to Engraftment During Autologous Stem Cell Transplantation in Patients With Multiple Myeloma. Plasmatology. 2021;15. [View at Publisher] [DOI] [Google Scholar]
42. Gerecke C, Fuhrmann S, Strifler S, Schmidt-Hieber M, Einsele H, Knop S. The Diagnosis and Treatment of Multiple Myeloma. Dtsch Arztebl Int. 2016; 113(27-28): 470-6. [View at Publisher] [DOI] [PMID] [Google Scholar]
43. Krishnan A, Murugesan M, Therayangalath B, Philip KJ, Nayanar SK, Nair CK. Determination of mononuclear cell count using peripheral smear and flow cytometry in peripheral blood stem cell products: A retrospective study from an Indian cancer center. Asian J Transfus Sci. 2021; 15(2): 151-156. [View at Publisher] [DOI] [PMID] [Google Scholar]
44. Kleiveland CR. Peripheral Blood Mononuclear Cells. In: Verhoeckx K, Cotter P, López-Expósito I, Kleiveland C, Lea T, Mackie A, Requena T, Swiatecka D, Wichers H, editors. The Impact of Food Bioactives on Health: in vitro and ex vivo models [Internet]. Cham (CH): Springer; 2015. Chapter 15. [View at Publisher] [DOI] [PMID] [Google Scholar]
45. Sheikh BA, Mehraj U, Bhat BA, Hamdani SS, Nisar S, Qayoom H, et al. Immunoglobulin. Basics Fundam Immunol [Internet]. 2022 Jan 24 [cited 2022 Apr 11]:139-74. Available from: https://www.ncbi.nlm.nih.gov/books/NBK513460/ [View at Publisher]
46. Rundgren IM, Ersvær E, Ahmed AB, Ryningen A, Bruserud Ø. Circulating monocyte subsets in multiple myeloma patients receiving autologous stem cell transplantation - a study of the preconditioning status and the course until posttransplant reconstitution for a consecutive group of patients. BMC Immunol. 2019; 20(1): 39. [View at Publisher] [DOI] [PMID] [Google Scholar]
47. Ahmed R, Ganguli P, Gupta UD, Jaiswal YK, Nair V, Das S, et al. Mononuclear cell evaluation: A correlation study between manual and analyzer-based estimation. Biomed Biotechnol Res J. 2020; 4(1): 34-40. [View at Publisher] [DOI] [Google Scholar]
48. Pura Krishnamurthy K, Sarathy V, Jayappa SB, Badarkhe GV, Kumar Ks R, Thianeshwaran S, et al. Study of Peripheral Mononuclear Cells and CD34 Levels as a Predictive Marker for Initiating Apheresis in Autologous Stem Cell Transplant. Int J Hematol Oncol Stem Cell Res. 2021; 15(3): 170-177. [View at Publisher] [PMID] [Google Scholar]
49. Bonig H, Papayannopoulou T. Hematopoietic stem cell mobilization: updated conceptual renditions. Leukemia. 2013; 27(1): 24-31. [View at Publisher] [DOI] [PMID] [Google Scholar]
50. Gardner RL. Stem cells: potency, plasticity and public perception. J Anat. 2002; 200(Pt 3): 277-82. [View at Publisher] [DOI] [PMID] [Google Scholar]
51. Adolfsson J, Månsson R, Buza-Vidas N, Hultquist A, Liuba K, Jensen CT, et al. Identification of Flt3+ Lympho-Myeloid Stem Cells Lacking Erythro-Megakaryocytic Potential: A Revised Road Map for Adult Blood Lineage Commitment. Cell. 2005; 121(2): 295-306. [View at Publisher] [DOI] [Google Scholar]
52. Bindu H, Stem Cell Res Ther J, Bindu HA. Potency of Various Types of Stem Cells and their Transplantation. J Stem Cell Res Ther. 2011;1:115. [View at Publisher] [DOI]
53. Lemos NE, Farias MG, Kubaski F, Scotti L, Onsten TGH, Brondani LA, et al. Quantification of peripheral blood CD34+ cells prior to stem cell harvesting by leukapheresis: a single center experience. Hematol Transfus Cell Ther. 2018; 40(3): 213-218. [View at Publisher] [DOI] [PMID] [Google Scholar]
54. Naeim F, Nagesh Rao P, Song SX, Grody WW. Chapter 2 - Principles of Immunophenotyping. Atlas of Hematopathology (Second Edition). 2018; 29-56. [View at Publisher] [DOI]
55. Sutherland DR, Anderson L, Keeney M, Nayar R, Chin-Yee I. The ISHAGE guidelines for CD34+ cell determination by flow cytometry. International Society of Hematotherapy and Graft Engineering. J Hematother. 1996; 5(3):213-26. [View at Publisher] [DOI] [PMID] [Google Scholar]
56. Matarraz S, Almeida J, Flores-Montero J, Lécrevisse Q, Guerri V, López A, et al. Introduction to the diagnosis and classification of monocytic-lineage leukemias by flow cytometry. Cytometry B Clin Cytom. 2017; 92(3): 218-227. [View at Publisher] [DOI] [PMID] [Google Scholar]
57. Yu JT, Cheng S Bin, Yang Y, Chang KH, Hwang WL, Teng CLJ. Circulating hematopoietic progenitors and CD34+cells predicted successful hematopoietic stem cell harvest in myeloma and lymphoma patients: Experiences from a single institution. J Blood Med. 2016;7:5-11. [View at Publisher] [DOI] [PMID] [Google Scholar]
58. Park KU, Kim SH, Suh C, Kim S, Lee SJ, Park JS, et al. Correlation of hematopoietic progenitor cell count determined by the SE-9000TM automated hematology analyzer with CD34+ cell count by flow cytometry in leukapheresis products. Am J Hematol. 2001; 67(1): 42-7. [View at Publisher] [DOI] [PMID] [Google Scholar]
59. Pahwa D, Sharma RR, Marwaha N. Predictors of Mononuclear Cell Yield in Patients Undergoing Autologous Mononuclear Stem Cell Therapy in Non-haemopoietic Degenerative Disorders. Indian J Hematol Blood Transfus. 2018; 34(2): 282-93. [View at Publisher] [DOI] [PMID] [Google Scholar]
60. Bhat S, Hussain S, Noor H, Shoket N. CD34+ hematopoietic progenitor cells enumeration and mononuclear cell count: an experience from a tertiary care centre. Int J Res Med Sci. 2019; 7(2): 421. [View at Publisher] [DOI] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.