Volume 17, Issue 1 (Jan-Feb 2023)                   mljgoums 2023, 17(1): 6-12 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

namjoo M, ghafoori H, Asghari M. VGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells. mljgoums 2023; 17 (1) :6-12
URL: http://mlj.goums.ac.ir/article-1-1485-en.html
1- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
2- Department of Biology, Faculty of Basic Sciences, University of Guilan, Rasht, Iran
3- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran 1417614411, Iran , namjoo_mohadeseh@yahoo.com
Abstract:   (353 Views)
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosphorylation. The vascular endothelial growth factor receptor-2 (VEGFR-2) suppression could result in apoptosis induction. Therefore, targeting these pathways via VEGFR-2 inhibitors might have therapeutic potential for cancer treatment. It has been indicated that an antagonist peptide of VEGF, referred to as VGB3, could neutralize and recognize VEGFR2 in the tumoral and endothelial cells. This study aimed to induce apoptosis in human umbilical vein endothelial cells (HUVEC) cells through the inhibition of these signaling pathways.
Methods: Effects of different concentrations of VGB3 (1-200 ng/ml) were evaluated on the viability of HUVEC  cells using MTT assay. In addition, downstream signaling pathways in HUVE cells were evaluated through quantitative assessment of protein expression via western blotting.
Results: The results demonstrated that VGB3 treatment inhibited the growth of HUVEC cells. Moreover, Bcl-2 was decreased in the cells treated with the VGB3 compared to the control. Furthermore, VGB3 significantly enhanced the cleaved-caspase7 levels, which is an indicator of apoptosis progression. Altogether, VGB3 enhanced apoptosis in HUVEC cells.
Conclusion: Our results indicate that the peptide might be a potential candidate for antitumor therapy via inhibiting the NF-κB pathway.
Full-Text [PDF 574 kb]   (156 Downloads) |   |   Full-Text (HTML)  (118 Views)  
Research Article: Original Paper | Subject: Biochemistry
Received: 2022/02/14 | Accepted: 2022/08/31 | Published: 2023/01/20 | ePublished: 2023/01/20

1. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998; 391(6662): 86-9. [View at Publisher] [DOI:10.1038/34193] [PubMed] [Google Scholar]
2. An J, Sun Y, Fisher M, Rettig MB. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18(10):1699-704. [View at Publisher] [DOI:10.1038/sj.leu.2403460] [PubMed] [Google Scholar]
3. Uddin S, Hussain AR, Al-Hussein KA, Manogaran PS, Wickrema A, Gutierrez MI, et al. Inhibition of phosphatidylinositol 3′-kinase/AKT signaling promotes apoptosis of primary effusion lymphoma cells. Clin cancer Res. 2005;11(8):3102-8. [View at Publisher] [DOI:10.1158/1078-0432.CCR-04-1857] [PubMed] [Google Scholar]
4. Uddin S, Hussain AR, Manogaran PS, Al-Hussein K, Platanias LC, Gutierrez MI, et al. Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene. 2005; 24(47): 7022-30. [View at Publisher] [DOI:10.1038/sj.onc.1208864] [PubMed] [Google Scholar]
5. Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol cancer Res. 2008;6(6):1059-70. [View at Publisher] [DOI:10.1158/1541-7786.MCR-07-2088] [PubMed] [Google Scholar]
6. Mayo MW, Wang C-Y, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, et al. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science (80- ). 1997; 278(5344): 1812-5. [View at Publisher] [DOI:10.1126/science.278.5344.1812] [PubMed] [Google Scholar]
7. Pradère J-P, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal. 2016; 9(442): ra85-ra85. [View at Publisher] [DOI:10.1126/scisignal.aab2820] [PubMed] [Google Scholar]
8. Zając G, Rusin M, Łasut-Szyszka B, Puszyński K, Widłak P. Activation of the atypical NF-κB pathway induced by ionizing radiation is not affected by the p53 status. Acta Biochim Pol. 2022;69(1):205-10. [View at Publisher] [DOI:10.18388/abp.2020_5942] [PubMed] [Google Scholar]
9. Sasaki CY, Barberi TJ, Ghosh P, Longo DL. Phosphorylation of RelA/p65 on serine 536 defines an IκBα-independent NF-κB pathway. J Biol Chem. 2005;280(41):34538-47. [View at Publisher] [DOI:10.1074/jbc.M504943200] [PubMed] [Google Scholar]
10. Douillette A, Bibeau-Poirier A, Gravel S-P, Clément J-F, Chénard V, Moreau P, et al. The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IκB kinase complex. J Biol Chem. 2006;281(19):13275-84. [View at Publisher] [DOI:10.1074/jbc.M512815200] [PubMed] [Google Scholar]
11. Bohuslav J, Chen L, Kwon H, Mu Y, Greene WC. p53 induces NF-κB activation by an IκB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem. 2004;279(25):26115-25. [View at Publisher] [DOI:10.1074/jbc.M313509200] [PubMed] [Google Scholar]
12. Oakley F, Teoh V, Ching-A-Sue G, Bataller R, Colmenero J, Jonsson JR, et al. Angiotensin II activates IκB kinase phosphorylation of RelA at Ser536 to promote myofibroblast survival and liver fibrosis. Gastroenterology. 2009;136(7):2334-44. [View at Publisher] [DOI:10.1053/j.gastro.2009.02.081] [PubMed] [Google Scholar]
13. Moles A, Sanchez AM, Banks PS, Murphy LB, Luli S, Borthwick L, et al. Inhibition of RelA‐Ser536 phosphorylation by a competing peptide reduces mouse liver fibrosis without blocking the innate immune response. Hepatology. 2013;57(2):817-28. [View at Publisher] [DOI:10.1002/hep.26068] [PubMed] [Google Scholar]
14. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13-9. [View at Publisher] [DOI:10.1093/jb/mvs136] [PubMed] [Google Scholar]
15. Song M, Finley SD. Mechanistic characterization of endothelial sprouting mediated by pro-angiogenic signaling. Microcirculation. 2022;29(2):e12744. [View at Publisher] [DOI:10.1111/micc.12744] [PubMed] [Google Scholar]
16. Dhakal HP, Naume B, Synnestvedt M, Borgen E, Kaaresen R, Schlichting E, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology. 2012;61(3):350-64. [View at Publisher] [DOI:10.1111/j.1365-2559.2012.04223.x] [PubMed] [Google Scholar]
17. Zhang P-C, Liu X, Li M-M, Ma Y-Y, Sun H-T, Tian X-Y, et al. AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo. Biochem Pharmacol. 2020;172:113771. [View at Publisher] [DOI:10.1016/j.bcp.2019.113771] [PubMed] [Google Scholar]
18. Abd El-Meguid EA, Naglah AM, Moustafa GO, Awad HM, El Kerdawy AM. Novel Benzothiazole-Based Dual VEGFR-2/EGFR Inhibitors Targeting Breast and Liver Cancers: Synthesis, Cytotoxic Activity, QSAR and Molecular Docking Studies. Bioorg Med Chem Lett. 2022;128529. [View at Publisher] [DOI:10.1016/j.bmcl.2022.128529] [PubMed] [Google Scholar]
19. Li Y, Xia Y, Jin B. Effect of anti-KDR antibody on the proliferation of hemangioma vascular endothelial cells in vitro. J Huazhong Univ Sci Technol. 2007;27(5):551-3. [View at Publisher] [DOI:10.1007/s11596-007-0519-x] [PubMed] [Google Scholar]
20. Paesler J, Gehrke I, Poll‐Wolbeck SJ, Kreuzer K. Targeting the vascular endothelial growth factor in hematologic malignancies. Eur J Haematol. 2012;89(5):373-84. [View at Publisher] [DOI:10.1111/ejh.12009] [PubMed] [Google Scholar]
21. Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, et al. Sunitinib in patients with metastatic renal cell carcinoma. Jama. 2006;295(21):2516-24. [View at Publisher] [DOI:10.1001/jama.295.21.2516] [PubMed] [Google Scholar]
22. Bang Y-J, Kang Y-K, Kang WK, Boku N, Chung HC, Chen J-S, et al. Phase II study of sunitinib as second-line treatment for advanced gastric cancer. Invest New Drugs. 2011;29(6):1449-58. [View at Publisher] [DOI:10.1007/s10637-010-9438-y] [PubMed] [Google Scholar]
23. Abdel-Rahman O, Fouad M. Sorafenib-based combination as a first line treatment for advanced hepatocellular carcinoma: a systematic review of the literature. Crit Rev Oncol Hematol. 2014;91(1):1-8. [View at Publisher] [DOI:10.1016/j.critrevonc.2013.12.013] [PubMed] [Google Scholar]
24. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007; 356(2): 125-34. [View at Publisher] [DOI:10.1056/NEJMoa060655] [PubMed] [Google Scholar]
25. Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies-a review. J Adv Res. 2017; 8(6): 591-605. [View at Publisher] [DOI:10.1016/j.jare.2017.06.006] [PubMed] [Google Scholar]
26. Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 2016;8(25):12444-70. [DOI:10.1039/C5NR07887C] [PubMed] [Google Scholar]
27. Sadremomtaz A, Ali AM, Jouyandeh F, Balalaie S, Navari R, Broussy S, et al. Molecular docking, synthesis and biological evaluation of Vascular Endothelial Growth Factor (VEGF) B based peptide as antiangiogenic agent targeting the second domain of the Vascular Endothelial Growth Factor Receptor 1 (VEGFR1D2) for anticancer applicat. Signal Transduct Target Ther. 2020;5(1):1-4. [View at Publisher] [DOI:10.1038/s41392-020-0177-z]
28. Asghari SM, Ehtesham S. Method of synthesizing antagonist peptides for cell growth. Google Patents; 2020. [Google Scholar]
29. Han S-S, Yun H, Son D-J, Tompkins VS, Peng L, Chung S-T, et al. NF-κB/STAT3/PI3K signaling crosstalk in iMyc Eμ B lymphoma. Mol Cancer. 2010;9(1):1-17. [View at Publisher] [DOI:10.1186/1476-4598-9-97] [PubMed] [Google Scholar]
30. Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Choudhury GG. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22(5):749-58. [View at Publisher] [DOI:10.1016/j.cellsig.2009.12.010] [PubMed] [Google Scholar]
31. Jayathilake AG, Kadife E, Kuol N, Luwor RB, Nurgali K, Su XQ. Krill oil supplementation reduces the growth of CT-26 orthotopic tumours in Balb/c mice. BMC Complement Med Ther. 2022; 22(1): 1-14. [DOI:10.1186/s12906-022-03521-4] [PubMed] [Google Scholar]
32. Banerjee A, Grumont R, Gugasyan R, White C, Strasser A, Gerondakis S. NF-κB1 and c-Rel cooperate to promote the survival of TLR4-activated B cells by neutralizing Bim via distinct mechanisms. Blood, J Am Soc Hematol. 2008;112(13):5063-73. [View at Publisher] [DOI:10.1182/blood-2007-10-120832] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.