1. Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS, et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature. 1998; 391(6662): 86-9. [
View at Publisher] [
DOI:10.1038/34193] [
PubMed] [
Google Scholar]
2. An J, Sun Y, Fisher M, Rettig MB. Antitumor effects of bortezomib (PS-341) on primary effusion lymphomas. Leukemia. 2004;18(10):1699-704. [
View at Publisher] [
DOI:10.1038/sj.leu.2403460] [
PubMed] [
Google Scholar]
3. Uddin S, Hussain AR, Al-Hussein KA, Manogaran PS, Wickrema A, Gutierrez MI, et al. Inhibition of phosphatidylinositol 3′-kinase/AKT signaling promotes apoptosis of primary effusion lymphoma cells. Clin cancer Res. 2005;11(8):3102-8. [
View at Publisher] [
DOI:10.1158/1078-0432.CCR-04-1857] [
PubMed] [
Google Scholar]
4. Uddin S, Hussain AR, Manogaran PS, Al-Hussein K, Platanias LC, Gutierrez MI, et al. Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma. Oncogene. 2005; 24(47): 7022-30. [
View at Publisher] [
DOI:10.1038/sj.onc.1208864] [
PubMed] [
Google Scholar]
5. Sethi G, Ahn KS, Aggarwal BB. Targeting nuclear factor-κB activation pathway by thymoquinone: role in suppression of antiapoptotic gene products and enhancement of apoptosis. Mol cancer Res. 2008;6(6):1059-70. [
View at Publisher] [
DOI:10.1158/1541-7786.MCR-07-2088] [
PubMed] [
Google Scholar]
6. Mayo MW, Wang C-Y, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ, et al. Requirement of NF-κB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science (80- ). 1997; 278(5344): 1812-5. [
View at Publisher] [
DOI:10.1126/science.278.5344.1812] [
PubMed] [
Google Scholar]
7. Pradère J-P, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal. 2016; 9(442): ra85-ra85. [
View at Publisher] [
DOI:10.1126/scisignal.aab2820] [
PubMed] [
Google Scholar]
8. Zając G, Rusin M, Łasut-Szyszka B, Puszyński K, Widłak P. Activation of the atypical NF-κB pathway induced by ionizing radiation is not affected by the p53 status. Acta Biochim Pol. 2022;69(1):205-10. [
View at Publisher] [
DOI:10.18388/abp.2020_5942] [
PubMed] [
Google Scholar]
9. Sasaki CY, Barberi TJ, Ghosh P, Longo DL. Phosphorylation of RelA/p65 on serine 536 defines an IκBα-independent NF-κB pathway. J Biol Chem. 2005;280(41):34538-47. [
View at Publisher] [
DOI:10.1074/jbc.M504943200] [
PubMed] [
Google Scholar]
10. Douillette A, Bibeau-Poirier A, Gravel S-P, Clément J-F, Chénard V, Moreau P, et al. The proinflammatory actions of angiotensin II are dependent on p65 phosphorylation by the IκB kinase complex. J Biol Chem. 2006;281(19):13275-84. [
View at Publisher] [
DOI:10.1074/jbc.M512815200] [
PubMed] [
Google Scholar]
11. Bohuslav J, Chen L, Kwon H, Mu Y, Greene WC. p53 induces NF-κB activation by an IκB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J Biol Chem. 2004;279(25):26115-25. [
View at Publisher] [
DOI:10.1074/jbc.M313509200] [
PubMed] [
Google Scholar]
12. Oakley F, Teoh V, Ching-A-Sue G, Bataller R, Colmenero J, Jonsson JR, et al. Angiotensin II activates IκB kinase phosphorylation of RelA at Ser536 to promote myofibroblast survival and liver fibrosis. Gastroenterology. 2009;136(7):2334-44. [
View at Publisher] [
DOI:10.1053/j.gastro.2009.02.081] [
PubMed] [
Google Scholar]
13. Moles A, Sanchez AM, Banks PS, Murphy LB, Luli S, Borthwick L, et al. Inhibition of RelA‐Ser536 phosphorylation by a competing peptide reduces mouse liver fibrosis without blocking the innate immune response. Hepatology. 2013;57(2):817-28. [
View at Publisher] [
DOI:10.1002/hep.26068] [
PubMed] [
Google Scholar]
14. Shibuya M. Vascular endothelial growth factor and its receptor system: physiological functions in angiogenesis and pathological roles in various diseases. J Biochem. 2013;153(1):13-9. [
View at Publisher] [
DOI:10.1093/jb/mvs136] [
PubMed] [
Google Scholar]
15. Song M, Finley SD. Mechanistic characterization of endothelial sprouting mediated by pro-angiogenic signaling. Microcirculation. 2022;29(2):e12744. [
View at Publisher] [
DOI:10.1111/micc.12744] [
PubMed] [
Google Scholar]
16. Dhakal HP, Naume B, Synnestvedt M, Borgen E, Kaaresen R, Schlichting E, et al. Expression of vascular endothelial growth factor and vascular endothelial growth factor receptors 1 and 2 in invasive breast carcinoma: prognostic significance and relationship with markers for aggressiveness. Histopathology. 2012;61(3):350-64. [
View at Publisher] [
DOI:10.1111/j.1365-2559.2012.04223.x] [
PubMed] [
Google Scholar]
17. Zhang P-C, Liu X, Li M-M, Ma Y-Y, Sun H-T, Tian X-Y, et al. AT-533, a novel Hsp90 inhibitor, inhibits breast cancer growth and HIF-1α/VEGF/VEGFR-2-mediated angiogenesis in vitro and in vivo. Biochem Pharmacol. 2020;172:113771. [
View at Publisher] [
DOI:10.1016/j.bcp.2019.113771] [
PubMed] [
Google Scholar]
18. Abd El-Meguid EA, Naglah AM, Moustafa GO, Awad HM, El Kerdawy AM. Novel Benzothiazole-Based Dual VEGFR-2/EGFR Inhibitors Targeting Breast and Liver Cancers: Synthesis, Cytotoxic Activity, QSAR and Molecular Docking Studies. Bioorg Med Chem Lett. 2022;128529. [
View at Publisher] [
DOI:10.1016/j.bmcl.2022.128529] [
PubMed] [
Google Scholar]
19. Li Y, Xia Y, Jin B. Effect of anti-KDR antibody on the proliferation of hemangioma vascular endothelial cells in vitro. J Huazhong Univ Sci Technol. 2007;27(5):551-3. [
View at Publisher] [
DOI:10.1007/s11596-007-0519-x] [
PubMed] [
Google Scholar]
20. Paesler J, Gehrke I, Poll‐Wolbeck SJ, Kreuzer K. Targeting the vascular endothelial growth factor in hematologic malignancies. Eur J Haematol. 2012;89(5):373-84. [
View at Publisher] [
DOI:10.1111/ejh.12009] [
PubMed] [
Google Scholar]
21. Motzer RJ, Rini BI, Bukowski RM, Curti BD, George DJ, Hudes GR, et al. Sunitinib in patients with metastatic renal cell carcinoma. Jama. 2006;295(21):2516-24. [
View at Publisher] [
DOI:10.1001/jama.295.21.2516] [
PubMed] [
Google Scholar]
22. Bang Y-J, Kang Y-K, Kang WK, Boku N, Chung HC, Chen J-S, et al. Phase II study of sunitinib as second-line treatment for advanced gastric cancer. Invest New Drugs. 2011;29(6):1449-58. [
View at Publisher] [
DOI:10.1007/s10637-010-9438-y] [
PubMed] [
Google Scholar]
23. Abdel-Rahman O, Fouad M. Sorafenib-based combination as a first line treatment for advanced hepatocellular carcinoma: a systematic review of the literature. Crit Rev Oncol Hematol. 2014;91(1):1-8. [
View at Publisher] [
DOI:10.1016/j.critrevonc.2013.12.013] [
PubMed] [
Google Scholar]
24. Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S, Siebels M, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007; 356(2): 125-34. [
View at Publisher] [
DOI:10.1056/NEJMoa060655] [
PubMed] [
Google Scholar]
25. Al-Abd AM, Alamoudi AJ, Abdel-Naim AB, Neamatallah TA, Ashour OM. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies-a review. J Adv Res. 2017; 8(6): 591-605. [
View at Publisher] [
DOI:10.1016/j.jare.2017.06.006] [
PubMed] [
Google Scholar]
26. Mukherjee S, Patra CR. Therapeutic application of anti-angiogenic nanomaterials in cancers. Nanoscale. 2016;8(25):12444-70. [
DOI:10.1039/C5NR07887C] [
PubMed] [
Google Scholar]
27. Sadremomtaz A, Ali AM, Jouyandeh F, Balalaie S, Navari R, Broussy S, et al. Molecular docking, synthesis and biological evaluation of Vascular Endothelial Growth Factor (VEGF) B based peptide as antiangiogenic agent targeting the second domain of the Vascular Endothelial Growth Factor Receptor 1 (VEGFR1D2) for anticancer applicat. Signal Transduct Target Ther. 2020;5(1):1-4. [
View at Publisher] [
DOI:10.1038/s41392-020-0177-z]
28. Asghari SM, Ehtesham S. Method of synthesizing antagonist peptides for cell growth. Google Patents; 2020. [
Google Scholar]
29. Han S-S, Yun H, Son D-J, Tompkins VS, Peng L, Chung S-T, et al. NF-κB/STAT3/PI3K signaling crosstalk in iMyc Eμ B lymphoma. Mol Cancer. 2010;9(1):1-17. [
View at Publisher] [
DOI:10.1186/1476-4598-9-97] [
PubMed] [
Google Scholar]
30. Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Choudhury GG. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22(5):749-58. [
View at Publisher] [
DOI:10.1016/j.cellsig.2009.12.010] [
PubMed] [
Google Scholar]
31. Jayathilake AG, Kadife E, Kuol N, Luwor RB, Nurgali K, Su XQ. Krill oil supplementation reduces the growth of CT-26 orthotopic tumours in Balb/c mice. BMC Complement Med Ther. 2022; 22(1): 1-14. [
DOI:10.1186/s12906-022-03521-4] [
PubMed] [
Google Scholar]
32. Banerjee A, Grumont R, Gugasyan R, White C, Strasser A, Gerondakis S. NF-κB1 and c-Rel cooperate to promote the survival of TLR4-activated B cells by neutralizing Bim via distinct mechanisms. Blood, J Am Soc Hematol. 2008;112(13):5063-73. [
View at Publisher] [
DOI:10.1182/blood-2007-10-120832] [
PubMed] [
Google Scholar]