Volume 17, Issue 3 (May-Jun 2023)                   mljgoums 2023, 17(3): 32-37 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Asadpour L, Moradi Bazghaleh M. Frequency of Plasmid-Located Quinolone Resistance Genes in Clinical Isolates of Klebsiella pneumoniae in Northern Iran. mljgoums 2023; 17 (3) :32-37
URL: http://mlj.goums.ac.ir/article-1-1484-en.html
1- Department of Biology, Rasht Branch, Islamic Azad University, Rasht, Iran , l.asadpour@yahoo.com
2- PhD Student of Bacteriology, Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract:   (1786 Views)
Background and objectives: Fluoroquinolones are a class of broad-spectrum antimicrobials typically used for the treatment of lower urinary tract infections. We aimed to determine the frequency of quinolone resistance genes in Klebsiella pneumoniae isolates from urinary tract infections in Guilan Province, Iran.
Methods: The resistance of 114 clinical isolates of K. pneumoniae to common fluoroquinolones and the minimum inhibitory concentration of ciprofloxacin were determined by disk diffusion and broth microdilution methods, respectively. Frequency of five plasmid-mediated quinolone resistance (PMQR) genes including qnrA, qnrB, qnrS, qepA, and aac (6')-Ib-cr was determined by PCR. 

Results. According to phenotypic assays, 60 isolates (52.6%) were resistant to at least one quinolone compound, 42 isolates (36.8%) were resistant to all tested quinolones, and 28 isolates (24.6%) showed a high level of ciprofloxacin resistance. In addition, aac(6')-Ib-cr was the most common PMQR gene (𝑛 = 44), followed by qnrS (𝑛 = 32), and qnrB (𝑛 = 21).
Conclusion: The possible dissemination of PMQR genes poses a serious threat to the management of infections by resistant Klebsiella pneumoniae.
Full-Text [PDF 522 kb]   (422 Downloads) |   |   Full-Text (HTML)  (456 Views)  
Research Article: Research Article | Subject: Microbiology
Received: 2022/02/11 | Accepted: 2022/06/6 | Published: 2023/05/21 | ePublished: 2023/05/21

References
1. Pendleton J, Gorman S, Gilmore B. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infective Therapy. 2013; 11 (3): 297-308. [View at Publisher] [DOI:10.1586/eri.13.12] [PubMed] [Google Scholar]
2. Rezazadeh M, Baghchesaraei H, Peymani A. Plasmid-mediated quinolone-resistance (qnr) genes in clinical isolates of Escherichia coli collected from several hospitals of Qazvin and Zanjan Provinces, Iran. Osong public health and research perspectives. 2016;7(5):307-312. [View at Publisher] [DOI:10.1016/j.phrp.2016.08.003] [PubMed] [Google Scholar]
3. Heidary M, Nasiri MJ, Dabiri H, Tarashi S. Prevalence of drug-resistant Klebsiella pneumoniae in Iran: a review article. Iranian journal of public health. 2018; 47(3): 317-326. [View at Publisher] [PubMed] [Google Scholar]
4. Nakano R, Okamoto R, Nakano A, Nagano N, Abe M, Tansho-Nagakawa S, et al. Rapid assay for detecting gyrA and parC mutations associated with fluoroquinolone resistance in Enterobacteriaceae. Journal of microbiological methods. 2013;94(3):213-216. [View at Publisher] [DOI:10.1016/j.mimet.2013.06.019] [PubMed] [Google Scholar]
5. Rzeczkowska M, Wołkowicz T, Zacharczuk K, Gierczyński R, Semczuk K, Dzierżanowska-Fangrat K, et al. Draft genome sequence of an Escherichia coli ST410 isolate co-harbouring blaCTX-M-15, blaCMY-42, blaOXA-1, aac (3)-IIa and aac (6′)-Ib-cr genes with gyrA and parC mutations isolated from a paediatric patient in Poland. Journal of global antimicrobial resistance. 2019;16:120-122. [View at Publisher] [DOI:10.1016/j.jgar.2018.11.024] [PubMed] [Google Scholar]
6. Myrenås M, Slettemeås JS, Thorsteinsdottir TR, Bengtsson B, Börjesson S, Nilsson O, et al. Clonal spread of Escherichia coli resistant to cephalosporins and quinolones in the Nordic broiler production. Veterinary microbiology. 2018;213:123-128. [View at Publisher] [DOI:10.1016/j.vetmic.2017.11.015] [PubMed] [Google Scholar]
7. Azargun R, Barhaghi MHS, Kafil HS, Oskouee MA, Sadeghi V, Memar MY, et al. Frequency of DNA gyrase and topoisomerase IV mutations and plasmid-mediated quinolone resistance genes among Escherichia coli and Klebsiella pneumoniae isolated from urinary tract infections in Azerbaijan, Iran. Journal of Global Antimicrobial Resistance. 2019;17:39-43. [View at Publisher] [DOI:10.1016/j.jgar.2018.11.003] [PubMed] [Google Scholar]
8. Domokos J, Damjanova I, Kristof K, Ligeti B, Kocsis B, Szabo D. Multiple benefits of plasmid-mediated quinolone resistance determinants in Klebsiella pneumoniae ST11 high-risk clone and recently emerging ST307 clone. Frontiers in microbiology:2019:157. [View at Publisher] [DOI:10.3389/fmicb.2019.00157] [PubMed] [Google Scholar]
9. Jomehzadeh N, Ahmadi K, Bahmanshiri MA. Investigation of plasmid mediated quinolone resistance genes among clinical isolates of Klebsiella pneumoniae in southwest Iran. Journal of Clinical Laboratory Analysis. 2022; 36(7):e24342. [View at Publisher] [DOI:10.1002/jcla.24342] [PubMed] [Google Scholar]
10. Kareem SM, Al-Kadmy IM, Kazaal SS, Ali ANM, Aziz SN, Makharita RR, et al. Detection of gyra and parc mutations and prevalence of plasmid-mediated quinolone resistance genes in Klebsiella pneumoniae. Infection and drug resistance. 2021;14:555-563. [View at Publisher] [DOI:10.2147/IDR.S275852] [PubMed] [Google Scholar]
11. Majlesi A, Kakhki RK, Nejad ASM, Mashouf RY, Roointan A, Abazari M, et al. Detection of plasmid-mediated quinolone resistance in clinical isolates of Enterobacteriaceae strains in Hamadan, West of Iran. Saudi journal of biological sciences. 2018;25(3):426-430. [View at Publisher] [DOI:10.1016/j.sjbs.2016.11.019] [PubMed] [Google Scholar]
12. Vaziri S, Afsharian M, Mansouri F, Azizi M, Nouri F, Madadi-Goli N, et al. Frequency of qnr and aac (6') Ib-cr Genes Among ESBL-Producing Klebsiella pneumoniae Strains Isolated from Burn Patients in Kermanshah, Iran. Jundishapur journal of microbiology. 2020;13(7):1-8. [DOI:10.5812/jjm.100348] [Google Scholar]
13. Nourozi M, Mirkalantari S, Omidi S. Frequency of Plasmid-Mediated Quinolone Resistance Genes qnrA, qnrB, and qnrS among Clinical Isolates of Klebsiella pneumoniae. Journal of Applied Biotechnology Reports. 2020;7(4):203-207. [View at Publisher] [DOI] [Google Scholar]
14. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 31st ed. CLSI supplement M100. Clinical and Laboratory Standards Institute; 2021. [View at Publisher]
15. Al-Agamy MH, Aljallal A, Radwan HH, Shibl AM. Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. Journal of infection and public health. 2018;11(1):64-68. [View at Publisher] [DOI:10.1016/j.jiph.2017.03.010] [PubMed] [Google Scholar]
16. Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature reviews microbiology. 2015;13(5):269-284. [View at Publisher] [DOI:10.1038/nrmicro3432] [PubMed] [Google Scholar]
17. Lorestani RC, Akya A, Elahi A. The mutations of topoisomerase genes and their effect on resistance to fluoroquinolones in extended-spectrum beta-lactamase-producing Escherichia coli. Jundishapur Journal of Natural Pharmaceutical Products. 2018;13(1): e57964. [View at Publisher] [DOI] [Google Scholar]
18. Osei Sekyere J, Amoako DG. Genomic and phenotypic characterisation of fluoroquinolone resistance mechanisms in Enterobacteriaceae in Durban, South Africa. PLoS One. 2017;12(6):e0178888. [View at Publisher] [DOI:10.1371/journal.pone.0178888] [PubMed] [Google Scholar]
19. Goudarzi M, Azad M, Seyedjavadi SS. Prevalence of plasmid-mediated quinolone resistance determinants and OqxAB efflux pumps among extended-spectrum-lactamase producing Klebsiella pneumoniae isolated from patients with nosocomial urinary tract infection in Tehran, Iran. Scientifica. 2015;2015:518167. [View at Publisher] [DOI:10.1155/2015/518167] [PubMed] [Google Scholar]
20. Mitra S, Mukherjee S, Naha S, Chattopadhyay P, Dutta S, Basu S. Evaluation of co-transfer of plasmid-mediated fluoroquinolone resistance genes and blaNDM gene in Enterobacteriaceae causing neonatal septicaemia. Antimicrobial Resistance & Infection Control. 2019; 8(1): 1-15. [View at Publisher] [DOI:10.1186/s13756-019-0477-7] [PubMed] [Google Scholar]
21. Yugendran T, Harish BN. High incidence of plasmid-mediated quinolone resistance genes among ciprofloxacin-resistant clinical isolates of Enterobacteriaceae at a tertiary care hospital in Puducherry, India. PeerJ. 2016;4:e1995. [View at Publisher] [DOI:10.7717/peerj.1995] [PubMed] [Google Scholar]
22. Badamchi A, Javadinia S, Farahani R, Solgi H, Tabatabaei A. Molecular Detection of Plasmid Mediated Quinolone Resistant Genes in Uropathogenic E. coli from Tertiary Referral Hospital in Tehran Iran. Archives of Pharmacology and Therapeutics. 2019;1(1): 19-24. [View at Publisher] [DOI:10.33696/Pharmacol.1.005] [Google Scholar]
23. Wang M, Jacoby GA, Mills DM, Hooper DC. SOS regulation of qnrB expression. Antimicrobial agents and chemotherapy. 2009;53(2):821-823. [View at Publisher] [DOI:10.1128/AAC.00132-08] [PubMed] [Google Scholar]
24. Wang A, Yang Y, Lu Q, Wang Y, Chen Y, Deng L, et al. Presence of qnr gene in Escherichia coli and Klebsiella pneumoniae resistant to ciprofloxacin isolated from pediatric patients in China. BMC Infectious Diseases. 2008;8(1):1-6. [View at Publisher] [DOI:10.1186/1471-2334-8-68] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.