Volume 16, Issue 5 (Sep-Oct 2022)                   mljgoums 2022, 16(5): 9-15 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zarrabi Ahrabi N, Ghadiripour H, Tabaie S M. In Vitro Synergistic Effects of Ciprofloxacin, Vitamin E, And Low Power Laser on Human Dermal Fibroblasts. mljgoums. 2022; 16 (5) :9-15
URL: http://mlj.goums.ac.ir/article-1-1394-en.html
1- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran , na.zarrabi@iauctb.ac.ir
2- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3- Department of Photo Healing and Regeneration, Medical Laser Research Center, Yara Institute, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran
Abstract:   (1187 Views)
Background and objectives: Human Dermal Fibroblasts (HDF) are involved in the production of the extracellular matrix, formation of the connective tissue, and wound healing. Considering the role of ciprofloxacin in the treatment of skin infections and the subsequent oxidative stress as well as the protective effects of vitamin E and low power laser against inflammation and oxidative stress, we evaluated combined effects of low power laser and vitamin E on inflammation and oxidative stress in HDF cells treated with ciprofloxacin.
Methods: Morphology of the cells was studied using an inverted microscope. Viability of the cells was assessed using the MTT assay, and the concentration of reactive oxygen species was determined after exposure of the cells to ciprofloxacin (5, 25, 50, 75, and 100 μg/ml), vitamin E (1 mg/ml), and low power laser (660 nm; power density: 30 mW.cm−2).
Results: The survival rate of the cells increased significantly after the treatment with ciprofloxacin, vitamin E, and low power laser compared with the cells treated with ciprofloxacin and vitamin E (p<0.001). The amount of reactive oxygen species increased in the treated cells when compared with those only treated with ciprofloxacin and vitamin E.
Conclusion: The low power laser treatment has favorable effects on the growth of HDF cells, which can be beneficial for wound healing, even in the presence of ciprofloxacin.
Full-Text [PDF 592 kb]   (38 Downloads) |   |   Full-Text (HTML)  (29 Views)  
Research Article: Research Article | Subject: Molecular Medicine
Received: 2021/06/22 | Accepted: 2021/08/11 | Published: 2022/09/6 | ePublished: 2022/09/6

1. Battler A, Leor J. Stem cell and gene-based therapy: Springer; 2006. [View at Publisher] [DOI:10.1007/1-84628-142-3] [Google Scholar]
2. Lietman PSJD. Fluoroquinolone toxicities. 1995;49(2):159-63. [View at Publisher] [DOI:10.2165/00003495-199500492-00026] [PubMed] [Google Scholar]
3. Sanchez JP, Domagala JM, Hagen SE, Heifetz CL, Hutt MP, Nichols JB, et al. Quinolone antibacterial agents. Synthesis and structure-activity relationships of 8-substituted quinoline-3-carboxylic acids and 1,8-naphthyridine-3-carboxylic acids. J Med Chem. 1988 ;31(5):983-91. [View at Publisher] [DOI:10.1021/jm00400a016] [PubMed] [Google Scholar]
4. Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell. 2002 ;2(1):29-42. [View at Publisher] [DOI:10.1016/S1535-6108(02)00082-X] [PubMed] [Google Scholar]
5. Lamb R, Ozsvari B, Lisanti CL, Tanowitz HB, Howell A, Martinez-Outschoorn UE, et al. Antibiotics that target mitochondria effectively eradicate cancer stem cells, across multiple tumor types: treating cancer like an infectious disease. Oncotarget. 2015 10;6(7):4569-84. [View at Publisher] [DOI:10.18632/oncotarget.3174] [PubMed] [Google Scholar]
6. Puoci F, Piangiolino C, Givigliano F, Parisi OI, Cassano R, Trombino S, et al . Ciprofloxacin-collagen conjugate in the wound healing treatment. J Funct Biomater. 2012 15;3(2):361-71. [View at Publisher] [DOI:10.3390/jfb3020361] [PubMed] [Google Scholar]
7. Beberok A, Wrześniok D, Szlachta M, Rok J, Rzepka Z, Respondek M,et al. Lomefloxacin Induces Oxidative Stress and Apoptosis in COLO829 Melanoma Cells. Int J Mol Sci. 2017 20;18(10):2194. [View at Publisher] [DOI:10.3390/ijms18102194] [PubMed] [Google Scholar]
8. Mester E, Mester AF, Mester A. The biomedical effects of laser application. Lasers in surgery and medicine. 1985;5(1):31-9. [View at Publisher] [DOI:10.1002/lsm.1900050105] [PubMed] [Google Scholar]
9. Posten W, Wrone DA, Dover JS, Arndt KA, Silapunt S, Alam M. Low‐level laser therapy for wound healing: mechanism and efficacy. Dermatologic surgery. 2005 Mar;31(3):334-40. [View at Publisher] [DOI:10.1097/00042728-200503000-00016] [PubMed] [Google Scholar]
10. LILGE L, TIERNEY K, NUSSBAUM E. Low-level laser therapy for wound healing: feasibility of wound dressing transillumination. Journal of clinical laser medicine & surgery. 2000 ;18(5):235-40. [View at Publisher] [DOI:10.1089/clm.2000.18.235] [PubMed] [Google Scholar]
11. Tam G. Low power laser therapy and analgesic action. Journal of clinical laser medicine & surgery. 1999 ;17(1):29-33. [DOI:10.1089/clm.1999.17.29] [PubMed] [Google Scholar]
12. Helgason CD, Miller CL. Basic cell culture protocols. Totowa, NJ.: Humana Press; 2005. [DOI:10.1385/1592598382] [Google Scholar]
13. Giannelli M, Bani D, Viti C, Tani A, Lorenzini L, Zecchi-Orlandini S, et al. Comparative evaluation of the effects of different photoablative laser irradiation protocols on the gingiva of periodontopathic patients. Photomed Laser Surg. 2012 ;30(4):222-30. [DOI:10.1089/pho.2011.3172] [PubMed] [Google Scholar]
14. van Meerloo J, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Methods Mol Biol. 2011;731:237-45. [View at Publisher] [DOI:10.1007/978-1-61779-080-5_20] [PubMed] [Google Scholar]
15. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. InAdvanced protocols in oxidative stress II 2010 (pp. 57-72). Humana Press, Totowa, NJ. [View at Publisher] [DOI:10.1007/978-1-60761-411-1_4] [PubMed] [Google Scholar]
16. Vangipuram M, Ting D, Kim S, Diaz R, Schüle B. Skin punch biopsy explant culture for derivation of primary human fibroblasts. J Vis Exp. 2013 7;(77):e3779. [DOI:10.3791/3779] [PubMed] [Google Scholar]
17. Hänzelmann S, Beier F, Gusmao EG, Koch CM, Hummel S, Charapitsa I, et al. Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenetics. 2015 4;7(1):19. [View at Publisher] [DOI:10.1186/s13148-015-0057-5] [PubMed] [Google Scholar]
18. Hincal F, Gürbay A, Favier A. Biphasic response of ciprofloxacin in human fibroblast cell cultures. Nonlinearity Biol Toxicol Med. 2003 ;1(4):481-92. [DOI:10.1080/15401420390271083] [PubMed] [Google Scholar]
19. Gürbay A, Garrel C, Osman M, Richard MJ, Favier A, Hincal F. Cytotoxicity in ciprofloxacin-treated human fibroblast cells and protection by vitamin E. Hum Exp Toxicol. 2002 ;21(12):635-41. [View at Publisher] [DOI:10.1191/0960327102ht305oa] [PubMed] [Google Scholar]
20. Shingyochi Y, Kanazawa S, Tajima S, Tanaka R, Mizuno H, Tobita M. A Low-Level Carbon Dioxide Laser Promotes Fibroblast Proliferation and Migration through Activation of Akt, ERK, and JNK. PLoS One. 2017 3;12(1):e0168937. [View at Publisher] [DOI:10.1371/journal.pone.0168937] [PubMed] [Google Scholar]
21. Pereira AN, Eduardo Cde P, Matson E, Marques MM. Effect of low-power laser irradiation on cell growth and procollagen synthesis of cultured fibroblasts. Lasers Surg Med. 2002;31(4):263-7. [View at Publisher] [DOI:10.1002/lsm.10107] [PubMed] [Google Scholar]
22. Ma H, Yang JP, Tan RK, Lee HW, Han SK. Effect of low-level laser therapy on proliferation and collagen synthesis of human fibroblasts in vitro. Journal of wound management and research. 2018 Mar 30;14(1):1-6. [DOI:10.22467/jwmr.2018.00283] [Google Scholar]
23. Luo L, Sun Z, Zhang L, Li X, Dong Y, Liu TC. Effects of low-level laser therapy on ROS homeostasis and expression of IGF-1 and TGF-β1 in skeletal muscle during the repair process. Lasers Med Sci. 2013 ;28(3):725-34. [View at Publisher] [DOI:10.1007/s10103-012-1133-0] [PubMed] [Google Scholar]
24. Tatmatsu-Rocha JC, Ferraresi C, Hamblin MR, Damasceno Maia F, do Nascimento NR, Driusso P,et al. Low-level laser therapy (904nm) can increase collagen and reduce oxidative and nitrosative stress in diabetic wounded mouse skin. J Photochem Photobiol B. 2016 ;164:96-102. [View at Publisher] [DOI:10.1016/j.jphotobiol.2016.09.017] [PubMed] [Google Scholar]
25. Fujimaki Y, Shimoyama T, Liu Q, Umeda T, Nakaji S, Sugawara K. Low-level laser irradiation attenuates production of reactive oxygen species by human neutrophils. J Clin Laser Med Surg. 2003 ;21(3):165-70. [View at Publisher] [DOI:10.1089/104454703321895635] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.