Volume 17, Issue 2 (Mar-Apr 2023)                   mljgoums 2023, 17(2): 39-44 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

sabbaghzadeh R. The Suggestion of a Drug for COVID-19 with Molecular Docking. mljgoums 2023; 17 (2) :39-44
URL: http://mlj.goums.ac.ir/article-1-1361-en.html
Department of Biology, Faculty of Sciences, Hakim Sabzevari University, Sabzevar, Iran , reihanehsabb@gmail.com
Abstract:   (823 Views)
Background and objectives: This study aimed to study the interaction between the severe acute respiratory syndrome coronavirus 2 (SARSCoV2) spike protein complex and seven drugs that inhibit the angiotensin-converting enzyme 2.
Methods: Plots of protein-ligand interaction were obtained using the LigPlot software. In addition, binding energies in kcal/mol, hydrophobic interactions, and hydrogen bonds were determined. Autodock software v.1.5.6 and AutoDock Vina were used for the analysis of molecular docking processes.
Results: The only structure that interacted with the SARSCoV2 spike protein was anakinra.
Conclusion: Anakinra was the only drug that interacted with the SARSCoV2 spike protein. This could be further investigated for finding a temporary alternative medicine for the treatment of coronavirus disease 2019.
Full-Text [PDF 443 kb]   (319 Downloads) |   |   Full-Text (HTML)  (208 Views)  
Research Article: Original Paper | Subject: Biochemistry
Received: 2021/01/19 | Accepted: 2021/09/8 | Published: 2023/03/14 | ePublished: 2023/03/14

References
1. Prashant P, Ashutosh KP, Akhilesh M, Parul G, Praveen KT, Manoj BM, et al. Uncanny similarity of unique inserts in the 2019-nCoV spike protein to HIV-1 gp120 and Gag. bioRxiv. 2020; 01.30.927871. [View at Publisher] [DOI:10.1101/2020.01.30.927871] [Google Scholar]
2. Chan JF, Kok KH, Zhu Z, Chu H, To KK, Yuan S, et al. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect. 2020; 9(1): 221-236. [View at Publisher] [PubMed] [Google Scholar]
3. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol. 2003; 77(16): 8801-11. [View at Publisher] [DOI] [PubMed] [Google Scholar]
4. Savino R, Ciapponi L, Lahm A, Demartis A, Cabibbo A, Toniatti C, et al. Rational design of a receptor super-antagonist of human interleukin-6. EMBO J. 1994; 13(24): 5863-70. [DOI:10.1002/j.1460-2075.1994.tb06931.x] [PubMed] [Google Scholar]
5. Gaddam RR, Chambers S, Bhatia M. ACE and ACE2 in inflammation: a tale of two enzymes. Inflamm Allergy Drug Targets. 2014;13(4):224-34. [View at Publisher] [DOI] [PubMed] [Google Scholar]
6. Jin HY, Song B, Oudit GY, Davidge ST, Yu HM, Jiang YY, et al. ACE2 deficiency enhances angiotensin II-mediated aortic profilin-1 expression, inflammation and peroxynitrite production. PLoS One. 2012; 7(6): e38502. [View at Publisher] [PubMed] [Google Scholar]
7. Ruiz-Ortega M, Esteban V, Rupérez M, Sánchez-López E, Rodríguez-Vita J, Carvajal G, Egido J. Renal and vascular hypertension-induced inflammation: role of angiotensin II. Curr Opin Nephrol Hypertens. 2006; 15(2): 159-66. [View at Publisher] [DOI:10.1097/01.mnh.0000203190.34643.d4] [PubMed] [Google Scholar]
8. Cai T, Zhang Y, Ho YL, Link N, Sun J, Huang J, et al. Association of Interleukin 6 Receptor Variant With Cardiovascular Disease Effects of Interleukin 6 Receptor Blocking Therapy: A Phenome-Wide Association Study. JAMA Cardiol. 2018; 3(9): 849-857. [View at Publisher] [PubMed] [Google Scholar]
9. Chamsi-Pasha MA, Shao Z, Tang WH. Angiotensin-converting enzyme 2 as a therapeutic target for heart failure. Curr Heart Fail Rep. 2014; 11(1): 58-63. [View at Publisher] [DOI] [PubMed] [Google Scholar]
10. Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020; 81(5): 537-540. [View at Publisher] [DOI:10.1002/ddr.21656.] [PubMed] [Google Scholar]
11. Caballero J. Considerations for Docking of Selective Angiotensin-Converting Enzyme Inhibitors. Molecules. 2020; 25(2): 295. [View at Publisher] [DOI:10.3390/molecules25020295] [PubMed] [Google Scholar]
12. Du L, He Y, Zhou Y, Liu S, Zheng BJ, Jiang S. The spike protein of SARS-CoV--a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009; 7(3): 226-36. [View at Publisher] [DOI:10.1038/nrmicro2090] [PubMed] [Google Scholar]
13. Haibo Zhang, Josef M. Penninger, Yimin Li, Nanshan Zhong and Arthur S. Slutsky, Angiotensin‑converting enzyme 2 (ACE2) as a SARS‑CoV‑2 receptor: molecular mechanisms and potential therapeutic target, Intensive Care Med, 2020. [DOI:10.1007/s00134-020-05985-9]
14. Yun Chen et al., Biochemical and Biophysical Research Communications, 2020.
15. Vaidya KA, Kadam AV, Nema V. Anti-Retroviral Drugs for HIV: Old and New. Austin Journal of HIV/AIDS Research. 2016; 3(2): 1026. [View at Publisher] [Google Scholar]
16. Borges ÁH, O'Connor JL, Phillips AN, Rönsholt FF, Pett S, Vjecha MJ, et al. Factors Associated With Plasma IL-6 Levels During HIV Infection. J Infect Dis. 2015; 212(4): 585-95. [DOI:10.1093/infdis/jiv123] [PubMed] [Google Scholar]
17. Osuji FN, Onyenekwe CC, Ahaneku JE, Ukibe NR. The effects of highly active antiretroviral therapy on the serum levels of pro-inflammatory and anti-inflammatory cytokines in HIV infected subjects. J Biomed Sci. 2018; 25(1): 88. [View at Publisher] [DOI:10.1186/s12929-018-0490-9] [PubMed] [Google Scholar]
18. Rogez-Kreuz C, Manéglier B, Martin M, Dereuddre-Bosquet N, Martal J, Dormont D, et al. Involvement of IL-6 in the anti-human immunodeficiency virus activity of IFN-tau in human macrophages. Int Immunol. 2005; 17(8): 1047-57. [View at Publisher] [DOI:10.1093/intimm/dxh285] [PubMed] [Google Scholar]
19. By Rachel A. Burke, Pharm.D., BCACP; and Nicole D. White, Pharm.D., Biologic Disease-Modifying Antirheumatic Drugs, PSAP 2014. [Google Scholar]
20. H. Haibel and C. Specker, Disease-modifying anti-rheumatic drugs in rheumatoid arthritis and ankylosing spondylitis, CLINICAL AND EXPERIMENTAL RHEUMATOLOGY 2009.
21. Furuta Y, Takahashi K, Shiraki K, Sakamoto K, Smee DF, Barnard DL, et al. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res. 2009 Jun;82(3):95-102. [View at Publisher] [DOI:10.1016/j.antiviral.2009.02.198] [PubMed] [Google Scholar]
22. Singh JA, Hossain A, Tanjong Ghogomu E, Kotb A, Christensen R, Mudano AS, et al. Biologics or tofacitinib for rheumatoid arthritis in incomplete responders to methotrexate or other traditional disease-modifying anti-rheumatic drugs: a systematic review and network meta-analysis. Cochrane Database Syst Rev. 2016; 2016(5):CD012183. [View at Publisher] [DOI:10.1002/14651858.CD012183.] [PubMed]
23. Marc C. Stuart, Maria Kouimtzi, Suzanne R. Hill. WHO Model Formulary. World Health Organization. 2008. [View at Publisher] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.