Volume 15, Issue 5 (Sep-Oct 2021)                   mljgoums 2021, 15(5): 44-54 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophore: A Suitable Candidate for Drug Delivery Using the Trojan Horse Strategy. mljgoums. 2021; 15 (5) :44-54
URL: http://mlj.goums.ac.ir/article-1-1353-en.html
1- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
2- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran , mahmoodi_pezhman@@basu.ac.ir
Abstract:   (360 Views)
Increasing antibiotic resistance is a global health problem. In recent years, due to the indiscriminate use of antibacterial compounds, many bacterial pathogens, including staphylococci, members of the Enterobacteriaceae family including Klebsiella pneumoniae and bacteria such as Pseudomonas aeruginosa and Acinetobacter baumannii have become multi-drug resistant. Consequently, it is important to explore alternative approaches for eliminating resistant strains. Bacteria synthesize low-weight molecules called siderophores to chelate iron from the environment as a vital element for their growth and survival. One way to deal with resistant bacterial strains is to utilize siderophore-mediated iron uptake pathways as entrance routes for drug delivery. Therefore, the production of drugs with Trojan horse strategy in the form of conjugated siderophore-antibiotic complexes has recently received much attention for dealing with resistant isolates. In this review, we discuss the efficacy of siderophore-antibiotic conjugates as a Trojan horse strategy for eliminating drug-resistant pathogens.
Full-Text [PDF 1148 kb]   (90 Downloads) |   |   Full-Text (HTML)  (87 Views)  
Research Article: Review Article | Subject: bacteriology
Received: 2020/12/24 | Accepted: 2021/03/1 | Published: 2021/08/31 | ePublished: 2021/08/31

1. Andersson DI, Hughes D. Persistence of antibiotic resistance in bacterial populations. FEMS microbiology reviews. 2011; 35(5): 901-11. [View at Publisher] [DOI:10.1111/j.1574-6976.2011.00289.x] [PubMed] [Google Scholar]
2. Fischbach MA, Walsh CT. Antibiotics for emerging pathogens. Science. 2009; 325(5944): 1089-93. [View at Publisher] [DOI:10.1126/science.1176667] [PubMed] [Google Scholar]
3. Chang C-k, Sue S-C, Yu T-h, Hsieh C-M, Tsai C-K, Chiang Y-C, et al. The dimer interface of the SARS coronavirus nucleocapsid protein adapts a porcine respiratory and reproductive syndrome virus-like structure. FEBS letters. 2005;579(25):5663-8. [View at Publisher] [DOI:10.1016/j.febslet.2005.09.038] [PubMed] [Google Scholar]
4. Ghosh M, Miller PA, Möllmann U, Claypool WD, Schroeder VA, Wolter WR, et al. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. Journal of medicinal chemistry. 2017; 60(11): 4577-83. [DOI:10.1021/acs.jmedchem.7b00102] [PubMed] [Google Scholar]
5. Schalk IJ. Siderophore-antibiotic conjugates: exploiting iron uptake to deliver drugs into bacteria. Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases. 2018; 24(8):801. [View at Publisher] [DOI:10.1016/j.cmi.2018.03.037] [PubMed] [Google Scholar]
6. Schalk IJ. A trojan-horse strategy including a bacterial suicide action for the efficient use of a specific Gram-positive antibiotic on Gram-negative bacteria. ACS Publications; 2018; 61: 3842−3844. [View at Publisher] [DOI:10.1021/acs.jmedchem.8b00522] [PubMed] [Google Scholar]
7. Munita JM, Arias CA. Mechanisms of antibiotic resistance. Virulence mechanisms of bacterial pathogens. 2016; 4(2): 4-2. [View at Publisher] [DOI:10.1128/microbiolspec.VMBF-0016-2015] [PubMed] [Google Scholar]
8. Prashanth K, Vasanth T, Saranathan R, Makki AR, Pagal S. Antibiotic resistance, biofilms and quorum sensing in Acinetobacter species. Antibiotic resistant bacteria: a continuous challenge in the new millennium. 2012;179-212. [View at Publisher] [DOI:10.5772/28813] [Google Scholar]
9. Shaikh SA, Jain T, Sandhu G, Latha N, Jayaram B. From drug target to leads-sketching a physicochemical pathway for lead molecule design in silico. Current pharmaceutical design. 2007; 13(34): 3454-70. [View at Publisher] [DOI:10.2174/138161207782794220] [PubMed] [Google Scholar]
10. Southon SB, Beres SB, Kachroo P, Saavedra MO, Erlendsdóttir H, Haraldsson G, et al. Population genomic molecular epidemiological study of macrolide-resistant Streptococcus pyogenes in Iceland, 1995 to 2016: identification of a large clonal population with a pbp2x mutation conferring reduced in vitro β-lactam susceptibility. Journal of clinical microbiology. 2020;58(9):e00638-20. [View at Publisher] [DOI:10.1128/JCM.00638-20] [PubMed] [Google Scholar]
11. Blair JM, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJ. Molecular mechanisms of antibiotic resistance. Nature reviews microbiology. 2015; 13(1): 42-51. [View at Publisher] [DOI:10.1038/nrmicro3380] [PubMed] [Google Scholar]
12. Sharkey LK, O'Neill AJ. Molecular Mechanisms of Antibiotic Resistance-Part II. Bacterial Resistance to Antibiotics-From Molecules to Man. 2019:27-50. [View at Publisher] [DOI:10.1002/9781119593522.ch2]
13. Li T, Liu C, Lu J, Gaurav GK, Chen W. Determination of how tetracycline influences nitrogen removal performance, community structure, and functional genes of biofilm systems. Journal of the Taiwan Institute of Chemical Engineers. 2020;106:99-109. [View at Publisher] [DOI:10.1016/j.jtice.2019.10.004] [Google Scholar]
14. Santajit S, Indrawattana N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. BioMed research international. 2016;2016. [View at Publisher] [DOI:10.1155/2016/2475067] [PubMed] [Google Scholar]
15. Clatworthy AE, Pierson E, Hung DT. Targeting virulence: a new paradigm for antimicrobial therapy. Nature chemical biology. 2007;3(9):541-8. [View at Publisher] [DOI:10.1038/nchembio.2007.24] [PubMed] [Google Scholar]
16. Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials. 2020; 252: 120078. [View at Publisher] [DOI:10.1016/j.biomaterials.2020.120078] [PubMed] [Google Scholar]
17. Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research. 2012;1823(9):1468-83. [View at Publisher] [DOI:10.1016/j.bbamcr.2012.05.010] [PubMed] [Google Scholar]
18. Schalk IJ, Mislin GL, Brillet K. Structure, function and binding selectivity and stereoselectivity of siderophore-iron outer membrane transporters. Current topics in membranes. 69: Elsevier. 2012; 37-66. [View at Publisher] [DOI:10.1016/B978-0-12-394390-3.00002-1] [PubMed] [Google Scholar]
19. Ahmed E, Holmström SJ. Siderophores in environmental research: roles and applications. Microbial biotechnology. 2014;7(3):196-208. [View at Publisher] [DOI:10.1111/1751-7915.12117] [PubMed] [Google Scholar]
20. Saha R, Saha N, Donofrio RS, Bestervelt LL. Microbial siderophores: a mini review. Journal of basic microbiology. 2013;53(4):303-17. [View at Publisher] [DOI:10.1002/jobm.201100552] [PubMed] [Google Scholar]
21. Khasheii B, Mahmoodi P, Mohammadzadeh A. Siderophores: Importance in Bacterial Pathogenesis and Applications in Medicine and Industry. Microbiological Research. 2021:126790. [View at Publisher] [DOI:10.1016/j.micres.2021.126790] [PubMed] [Google Scholar]
22. Hider RC, Kong X. Chemistry and biology of siderophores. Natural product reports. 2010; 27(5): 637-57. [DOI:10.1039/b906679a] [PubMed] [Google Scholar]
23. Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator-Siderophore: A review. Microbiological research. 2018;212:103-11. [View at Publisher] [DOI:10.1016/j.micres.2017.10.012] [PubMed] [Google Scholar]
24. Krewulak KD, Vogel HJ. Structural biology of bacterial iron uptake. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2008; 1778(9): 1781-804. [View at Publisher] [DOI:10.1016/j.bbamem.2007.07.026] [PubMed] [Google Scholar]
25. Andrews SC, Robinson AK, Rodríguez-Quiñones F. Bacterial iron homeostasis. FEMS microbiology reviews. 2003;27(2-3):215-37. [View at Publisher] [DOI:10.1016/S0168-6445(03)00055-X] [PubMed] [Google Scholar]
26. Wandersman C, Delepelaire P. Bacterial iron sources: from siderophores to hemophores. Annu Rev Microbiol. 2004;58:611-47. [View at Publisher] [DOI:10.1146/annurev.micro.58.030603.123811] [PubMed] [Google Scholar]
27. Sah S, Singh R. Siderophore: Structural and functional characterisation-A comprehensive review. Agriculture (Pol'nohospodárstvo). 2015; 61(3): 97-114. [DOI:10.1515/agri-2015-0015] [PubMed] [Google Scholar]
28. Furrer JL, Sanders DN, Hook‐Barnard IG, McIntosh MA. Export of the siderophore enterobactin in Escherichia coli: involvement of a 43 kDa membrane exporter. Molecular microbiology. 2002;44(5):1225-34. [View at Publisher] [DOI:10.1046/j.1365-2958.2002.02885.x] [PubMed] [Google Scholar]
29. Bleuel C, Große C, Taudte N, Scherer J, Wesenberg D, Krauß GJ, et al. TolC is involved in enterobactin efflux across the outer membrane of Escherichia coli. Journal of bacteriology. 2005;187(19):6701-7. [View at Publisher] [DOI:10.1128/JB.187.19.6701-6707.2005] [PubMed] [Google Scholar]
30. Page MG. The role of iron and siderophores in infection, and the development of siderophore antibiotics. Clinical Infectious Diseases. 2019;69(Supplement_7):S529-S37. [DOI:10.1093/cid/ciz825] [PubMed] [Google Scholar]
31. Köster W. ABC transporter-mediated uptake of iron, siderophores, heme and vitamin B12. Research in microbiology. 2001;152(3-4): 291-301. [View at Publisher] [DOI:10.1016/S0923-2508(01)01200-1] [PubMed] [Google Scholar]
32. Mislin GL, Schalk IJ. Siderophore-dependent iron uptake systems as gates for antibiotic Trojan horse strategies against Pseudomonas aeruginosa. Metallomics. 2014;6(3):408-20. [DOI:10.1039/C3MT00359K] [PubMed] [Google Scholar]
33. Klahn P, Brönstrup M. Bifunctional antimicrobial conjugates and hybrid antimicrobials. Natural product reports. 2017;34(7):832-85. [View at Publisher] [DOI:10.1039/C7NP00006E] [PubMed] [Google Scholar]
34. Wencewicz TA, Möllmann U, Long TE, Miller MJ. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin "Trojan Horse" antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Biometals. 2009;22(4):633-48. [View at Publisher] [DOI:10.1007/s10534-009-9218-3] [PubMed] [Google Scholar]
35. Skwarecki AS, Milewski S, Schielmann M, Milewska MJ. Antimicrobial molecular nanocarrier-drug conjugates. Nanomedicine: Nanotechnology, Biology and Medicine. 2016;12(8):2215-40. [View at Publisher] [DOI:10.1016/j.nano.2016.06.002] [PubMed] [Google Scholar]
36. Kong H, Cheng W, Wei H, Yuan Y, Yang Z, Zhang X. An overview of recent progress in siderophore-antibiotic conjugates. European journal of medicinal chemistry. 2019;182:111615. [View at Publisher] [DOI:10.1016/j.ejmech.2019.111615] [PubMed] [Google Scholar]
37. Pramanik A, Stroeher UH, Krejci J, Standish AJ, Bohn E, Paton JC, et al. Albomycin is an effective antibiotic, as exemplified with Yersinia enterocolitica and Streptococcus pneumoniae. International Journal of Medical Microbiology. 2007;297(6):459-69. [View at Publisher] [DOI:10.1016/j.ijmm.2007.03.002] [Google Scholar]
38. Sulochana MB, Jayachandra SY, Kumar SKA, Dayanand A. Antifungal attributes of siderophore produced by the Pseudomonas aeruginosa JAS‐25. Journal of Basic Microbiology. 2014;54(5):418-24. [View at Publisher] [DOI:10.1002/jobm.201200770] [PubMed] [Google Scholar]
39. Górska A, Sloderbach A, Marszałł MP. Siderophore-drug complexes: potential medicinal applications of the 'Trojan horse'strategy. Trends in pharmacological sciences. 2014;35(9):442-9. [View at Publisher] [DOI:10.1016/j.tips.2014.06.007] [PubMed] [Google Scholar]
40. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, et al. Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clinical infectious diseases. 2009;48(1):1-12. [View at Publisher] [DOI:10.1086/595011] [PubMed] [Google Scholar]
41. Braun V, Pramanik A, Gwinner T, Köberle M, Bohn E. Sideromycins: tools and antibiotics. Biometals. 2009;22(1):3. [View at Publisher] [DOI:10.1007/s10534-008-9199-7] [PubMed] [Google Scholar]
42. Reynolds DM, Schatz A, Waksman SA. Grisein, a new antibiotic produced by a strain of Streptomyces griseus. Proceedings of the Society for Experimental Biology and Medicine. 1947;64(1):50-4. [View at Publisher] [DOI:10.3181/00379727-64-15695] [PubMed] [Google Scholar]
43. Sackmann W, Reusser P, Neipp L, Kradolfer F, Gross F. Ferrimycin A, a new iron-containing antibiotic. Antibiotics & Chemotherapy. 1962;12(1):34-45. [PubMed] [Google Scholar]
44. Pramanik A, Braun V. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. Journal of bacteriology. 2006;188(11):3878-86. [View at Publisher] [DOI:10.1128/JB.00205-06] [PubMed] [Google Scholar]
45. Ballouche M, Cornelis P, Baysse C. Iron metabolism: a promising target for antibacterial strategies. Recent patents on anti-infective drug discovery. 2009;4(3):190-205. [DOI:10.2174/157489109789318514] [PubMed] [Google Scholar]
46. Page MG. Siderophore conjugates. Annals of the New York Academy of Sciences. 2013;1277(1):115-26. [View at Publisher] [DOI:10.1111/nyas.12024] [PubMed] [Google Scholar]
47. Vassiliadis G, Destoumieux-Garzón D, Lombard C, Rebuffat S, Peduzzi J. Isolation and characterization of two members of the siderophore-microcin family, microcins M and H47. Antimicrobial agents and chemotherapy. 2010; 54(1): 288-97. [View at Publisher] [DOI:10.1128/AAC.00744-09] [PubMed] [Google Scholar]
48. Duquesne S, Destoumieux-Garzón D, Peduzzi J, Rebuffat S. Microcins, gene-encoded antibacterial peptides from enterobacteria. Natural product reports. 2007;24(4):708-34. [DOI:10.1039/b516237h] [PubMed] [Google Scholar]
49. Strahsburger E, Baeza M, Monasterio O, Lagos R. Cooperative uptake of microcin E492 by receptors FepA, Fiu, and Cir and inhibition by the siderophore enterochelin and its dimeric and trimeric hydrolysis products. Antimicrobial agents and chemotherapy. 2005;49(7):3083-6. [View at Publisher] [DOI:10.1128/AAC.49.7.3083-3086.2005] [PubMed] [Google Scholar]
50. de Carvalho CC, Fernandes P. Siderophores as "Trojan Horses": tackling multidrug resistance? Frontiers in microbiology. 2014;5:290. [DOI:10.3389/fmicb.2014.00290] [PubMed] [Google Scholar]
51. Miller MJ, Zhu H, Xu Y, Wu C, Walz AJ, Vergne A, et al. Utilization of microbial iron assimilation processes for the development of new antibiotics and inspiration for the design of new anticancer agents. Biometals. 2009;22(1):61. [View at Publisher] [DOI:10.1007/s10534-008-9185-0] [PubMed] [Google Scholar]
52. Milner SJ, Seve A, Snelling AM, Thomas GH, Kerr KG, Routledge A, et al. Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Organic & biomolecular chemistry. 2013;11(21):3461-8. [DOI:10.1039/c3ob40162f] [PubMed] [Google Scholar]
53. Gasser V, Baco E, Cunrath O, August PS, Perraud Q, Zill N, et al. Catechol siderophores repress the pyochelin pathway and activate the enterobactin pathway in P seudomonas aeruginosa: an opportunity for siderophore-antibiotic conjugates development. Environmental microbiology. 2016;18(3):819-32. [View at Publisher] [DOI:10.1111/1462-2920.13199] [PubMed] [Google Scholar]
54. Zähner H, Diddens H, Keller-Schierlein W, Nägeli H. Some experiments with semisynthetic sideromycins. The Japanese journal of antibiotics. 1977;30:201. [PubMed] [Google Scholar]
55. Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline in 2013. The Journal of antibiotics. 2013; 66(10): 571-91. [View at Publisher] [DOI:10.1038/ja.2013.86] [PubMed] [Google Scholar]
56. Hofer B, Dantier C, Gebhardt K, Desarbre E, Schmitt-Hoffmann A, Page MG. Combined effects of the siderophore monosulfactam BAL30072 and carbapenems on multidrug-resistant Gram-negative bacilli. Journal of Antimicrobial Chemotherapy. 2013;68(5):1120-9. [View at Publisher] [DOI:10.1093/jac/dks527] [PubMed] [Google Scholar]
57. Ji C, Miller PA, Miller MJ. Iron transport-mediated drug delivery: practical syntheses and in vitro antibacterial studies of tris-catecholate siderophore-aminopenicillin conjugates reveals selectively potent antipseudomonal activity. Journal of the American Chemical Society. 2012;134(24):9898-901. [View at Publisher] [DOI:10.1021/ja303446w] [PubMed] [Google Scholar]
58. Möllmann U, Heinisch L, Bauernfeind A, Köhler T, Ankel-Fuchs D. Siderophores as drug delivery agents: application of the "Trojan Horse" strategy. Biometals. 2009;22(4):615-24. [View at Publisher] [DOI:10.1007/s10534-009-9219-2] [PubMed] [Google Scholar]
59. Watanabe N, Nagasu T, Katsu K, Kitoh K. E-0702, a new cephalosporin, is incorporated into Escherichia coli cells via the tonB-dependent iron transport system. Antimicrobial agents and chemotherapy. 1987;31(4):497-504. [View at Publisher] [DOI:10.1128/AAC.31.4.497] [PubMed] [Google Scholar]
60. Kinzel O, Tappe R, Gerus I, Budzikiewicz H. The synthesis and antibacterial activity of two pyoverdin-ampicillin conjugates, entering Pseudomonas aeruginosa via the pyoverdin-mediated iron uptake pathway. The Journal of antibiotics. 1998;51(5):499-507. [DOI:10.7164/antibiotics.51.499] [PubMed] [Google Scholar]
61. Silley P, Griffiths JW, Monsey D, Harris AM. Mode of action of GR69153, a novel catechol-substituted cephalosporin, and its interaction with the tonB-dependent iron transport system. Antimicrobial agents and chemotherapy. 1990; 34(9): 1806-8. [DOI:10.1128/AAC.34.9.1806] [PubMed] [Google Scholar]
62. Ghosh M, Lambert LJ, Huber PW, Miller MJ. Synthesis, bioactivity, and DNA-cleaving ability of desferrioxamine B-nalidixic acid and anthraquinone carboxylic acid conjugates. Bioorganic & Medicinal Chemistry Letters. 1995;5(20):2337-40. [View at Publisher] [DOI:10.1016/0960-894X(95)00412-M] [Google Scholar]
63. Fardeau S, Dassonville-Klimpt A, Audic N, Sasaki A, Pillon M, Baudrin E, et al. Synthesis and antibacterial activity of catecholate-ciprofloxacin conjugates. Bioorganic & medicinal chemistry. 2014;22(15):4049-60. [View at Publisher] [DOI:10.1016/j.bmc.2014.05.067] [PubMed] [Google Scholar]
64. Hennard C, Truong QC, Desnottes J-F, Paris J-M, Moreau NJ, Abdallah MA. Synthesis and Activities of Pyoverdin− Quinolone Adducts: A Prospective Approach to a Specific Therapy Against Pseudomonas a eruginosa. Journal of medicinal chemistry. 2001;44(13):2139-51. [View at Publisher] [DOI:10.1021/jm990508g] [PubMed] [Google Scholar]
65. Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, et al. Design, synthesis, and study of a mycobactin− artemisinin conjugate that has selective and potent activity against tuberculosis and malaria. Journal of the American chemical society. 2011;133(7):2076-9. [View at Publisher] [DOI:10.1021/ja109665t] [PubMed] [Google Scholar]
66. Flanagan ME, Brickner SJ, Lall M, Casavant J, Deschenes L, Finegan SM, et al. Preparation, Gram-negative antibacterial activity, and hydrolytic stability of novel siderophore-conjugated monocarbam diols. ACS medicinal chemistry letters. 2011;2(5):385-90. [View at Publisher] [DOI:10.1021/ml200012f] [PubMed] [Google Scholar]
67. Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of Gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrobial agents and chemotherapy. 2018;62(2):e01968-17. [View at Publisher] [DOI:10.1128/AAC.01968-17] [PubMed] [Google Scholar]
68. Zhanel GG, Golden AR, Zelenitsky S, Wiebe K, Lawrence CK, Adam HJ, et al. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant gram-negative bacilli. Drugs. 2019; 79(3): 271-89. [View at Publisher] [DOI:10.1007/s40265-019-1055-2] [PubMed] [Google Scholar]
69. Chairatana P, Zheng T, Nolan EM. Targeting virulence: salmochelin modification tunes the antibacterial activity spectrum of β-lactams for pathogen-selective killing of Escherichia coli. Chemical science. 2015;6(8):4458-71. [DOI:10.1039/C5SC00962F] [PubMed] [Google Scholar]
70. Ghosh M, Lin Y-M, Miller PA, Möllmann U, Boggess WC, Miller MJ. Siderophore conjugates of daptomycin are potent inhibitors of carbapenem resistant strains of Acinetobacter baumannii. ACS Infectious Diseases. 2018;4(10):1529-35. [View at Publisher] [DOI:10.1021/acsinfecdis.8b00150] [PubMed] [Google Scholar]
71. Neumann W, Sassone-Corsi M, Raffatellu M, Nolan EM. Esterase-catalyzed siderophore hydrolysis activates an enterobactin-ciprofloxacin conjugate and confers targeted antibacterial activity. Journal of the American Chemical Society. 2018;140(15):5193-201. [View at Publisher] [DOI:10.1021/jacs.8b01042] [PubMed] [Google Scholar]
72. Boyce JH, Dang B, Ary B, Edmondson Q, Craik CS, DeGrado WF, et al. Platform to Discover Protease-Activated Antibiotics and Application to Siderophore-Antibiotic Conjugates. Journal of the American Chemical Society. 2020;142(51):21310-21. [View at Publisher] [DOI:10.1021/jacs.0c06987] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:

Send email to the article author

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.