Volume 17, Issue 3 (May-Jun 2023)                   mljgoums 2023, 17(3): 38-44 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

jafari S, fathi M, Rahmati M. Effects of Taurine Supplementation during Endurance Training on Antioxidant Activity in Males. mljgoums 2023; 17 (3) :38-44
URL: http://mlj.goums.ac.ir/article-1-1339-en.html
1- Department of Physical Education and sport sciences, Lorestan University, Khorammabad, Iran
2- Department of Physical Education and sport sciences, Lorestan University, Khorammabad, Iran , fathi.m@lu.ac.ir
Abstract:   (1508 Views)
Background and objectives: Endurance exercise causes fatigue due to mitochondrial dysfunction and oxidative stress. The present study was designed to investigate the effects of taurine supplementation on lipids peroxidation and antioxidant activity during endurance activities. 
Methods: Twenty-four male volunteers aged 27 ± 1.8 years and weighting 74.9 ± 5.9 kg were randomly divided into three groups: taurine supplementation (n=8), placebo (n=8), and control (n=8). The subjects completed a 28-day endurance training protocol. Biochemical parameters such as superoxide dismutase (SOD), glutathione peroxidase (GPX) activities, as well as malondialdehyde (MDA) concentrations (8 hours before the first session and 8 hours after the last session) and maximum rate of oxygen consumption, were measured to evaluate the antioxidant, lipid peroxidation, and VO2 max status respectively. Finally, data were analyzed by SPSS software at a significance level of <0.05.
Results: Taurine supplementation significantly increased SOD (p=0.001) and GPX (p=0.001) but significantly decreased MDA (p=0.001). However, it had no significant effect on the VO2 max. 
Conclusion: The results of the present study indicate that taurine has antioxidant effects against endurance exercise-induced oxidant stress and lipid peroxidation.
Full-Text [PDF 429 kb]   (529 Downloads) |   |   Full-Text (HTML)  (362 Views)  
Research Article: Original Paper | Subject: Sport Physiology
Received: 2020/10/22 | Accepted: 2022/03/13 | Published: 2023/05/21 | ePublished: 2023/05/21

References
1. Sun L, Shen W, Liu Z, Guan S, Liu J, Ding S. Endurance exercise causes mitochondrial and oxidative stress in rat liver: effects of a combination of mitochondrial targeting nutrients. Life sciences. 2010; 86(1-2): 39-44. [View at Publisher] [DOI:10.1016/j.lfs.2009.11.003] [PubMed] [Google Scholar]
2. Fisher-Wellman K, Bloomer RJ. Acute exercise and oxidative stress: a 30 year history. Dynamic Medicine. 2009; 8(1): 1. [View at Publisher] [DOI:10.1186/1476-5918-8-1] [PubMed] [Google Scholar]
3. Zuo L, Zhou T, Pannell BK, Ziegler AC, Best TM. Biological and physiological role of reactive oxygen species--the good, the bad and the ugly. Acta Physiol (Oxf). 2015; 214(3): 329-48. [View at Publisher] [DOI:10.1111/apha.12515] [PubMed] [Google Scholar]
4. Woods JR, Jr., Plessinger MA, Fantel A. An introduction to reactive oxygen species and their possible roles in substance abuse. Obstetrics and gynecology clinics of North America. 1998; 25(1): 219-36. [View at Publisher] [DOI:10.1016/S0889-8545(05)70366-1] [PubMed] [Google Scholar]
5. Mossman BT. Introduction to serial reviews on the role of reactive oxygen and nitrogen species (ROS/RNS) in lung injury and diseases. Free radical biology & medicine. 2003; 34(9): 1115-6. [DOI:10.1016/S0891-5849(03)00061-3] [PubMed] [Google Scholar]
6. Therond P. Oxidative stress and damages to biomolecules (lipids, proteins, DNA). Annales pharmaceutiques francaises. 2006; 64(6): 383-9. [View at Publisher] [DOI:10.1016/S0003-4509(06)75333-0] [PubMed] [Google Scholar]
7. Hemnani T, Parihar MS. Reactive oxygen species and oxidative DNA damage. Indian journal of physiology and pharmacology. 1998;42(4):440-52. [View at Publisher] [PubMed] [Google Scholar]
8. Ho E, Karimi Galougahi K, Liu CC, Bhindi R, Figtree GA. Biological markers of oxidative stress: Applications to cardiovascular research and practice. Redox biology. 2013;1:483-91. [View at Publisher] [DOI:10.1016/j.redox.2013.07.006] [PubMed] [Google Scholar]
9. Ayala A, Munoz MF, Arguelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative medicine and cellular longevity. 2014;2014:360438. [View at Publisher] [DOI:10.1155/2014/360438] [PubMed] [Google Scholar]
10. Ito T, Kimura Y, Uozumi Y, Takai M, Muraoka S, Matsuda T, et al. Taurine depletion caused by knocking out the taurine transporter gene leads to cardiomyopathy with cardiac atrophy. J Mol Cell Cardiol. 2008;44(5):927-37. [View at Publisher] [DOI:10.1016/j.yjmcc.2008.03.001] [PubMed] [Google Scholar]
11. De Luca A, Pierno S, Camerino DC. Taurine: the appeal of a safe amino acid for skeletal muscle disorders. J Transl Med. 2015;13:243. [View at Publisher] [DOI:10.1186/s12967-015-0610-1] [PubMed] [Google Scholar]
12. Conte Camerino D, Tricarico D, Pierno S, Desaphy JF, Liantonio A, Pusch M, et al. Taurine and skeletal muscle disorders. Neurochemical research. 2004;29(1):135-42. [View at Publisher] [DOI:10.1023/B:NERE.0000010442.89826.9c] [PubMed] [Google Scholar]
13. Ito T, Yoshikawa N, Inui T, Miyazaki N, Schaffer SW, Azuma J. Tissue depletion of taurine accelerates skeletal muscle senescence and leads to early death in mice. PLoS One. 2014; 9(9): e107409. [View at Publisher] [DOI:10.1371/journal.pone.0107409] [PubMed] [Google Scholar]
14. Quesada O, Lu P, Sturman JA. Taurine distribution in different cat muscles as visualized by immunohistochemistry: changes with stimulus state. Cytobios. 1993;73(294-295):143-54. [PubMed] [Google Scholar]
15. Blomstrand E, Saltin B. Effect of muscle glycogen on glucose, lactate and amino acid metabolism during exercise and recovery in human subjects. J Physiol. 1999;514 ( Pt 1):293-302. [View at Publisher] [DOI:10.1111/j.1469-7793.1999.293af.x] [PubMed]
16. Wright CE, Tallan HH, Lin YY, Gaull GE. Taurine: biological update. Annual review of biochemistry. 1986;55:427-53. [View at Publisher] [DOI:10.1146/annurev.bi.55.070186.002235] [Google Scholar]
17. Oliveira MW, Minotto JB, de Oliveira MR, Zanotto-Filho A, Behr GA, Rocha RF, et al. Scavenging and antioxidant potential of physiological taurine concentrations against different reactive oxygen/nitrogen species. Pharmacological reports : PR. 2010;62(1):185-93. [View at Publisher] [DOI:10.1016/S1734-1140(10)70256-5] [PubMed] [Google Scholar]
18. Yildirim Z, Kilic N. Effects of Taurine and Age on Cerebellum Antioxidant Status and Oxidative Stress. International Journal of Gerontology. 2011;5:166-70. [View at Publisher] [DOI:10.1016/j.ijge.2011.09.019] [Google Scholar]
19. Davies KJ, Quintanilha AT, Brooks GA, Packer L. Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun. 1982;107(4):1198-205. [View at Publisher] [DOI:10.1016/S0006-291X(82)80124-1] [PubMed] [Google Scholar]
20. Powers SK, Nelson WB, Hudson MB. Exercise-induced oxidative stress in humans: Cause and consequences. Free radical biology & medicine. 2011;51(5):942-50. [View at Publisher] [DOI:10.1016/j.freeradbiomed.2010.12.009] [PubMed] [Google Scholar]
21. Powers SK, Jackson MJ. Exercise-Induced Oxidative Stress: Cellular Mechanisms and Impact on Muscle Force Production. Physiol Rev. 2008; 88: 1243-76. [View at Publisher] [DOI:10.1152/physrev.00031.2007] [PubMed] [Google Scholar]
22. Waldron M, Knight F, Tallent J, Patterson S, Jeffries O. The effects of taurine on repeat sprint cycling after low or high cadence exhaustive exercise in females. Amino Acids. 2018; 50(6): 663-669. [View at Publisher] [DOI:10.1007/s00726-018-2554-2] [PubMed] [Google Scholar]
23. Balshaw TG, Bampouras TM, Barry TJ, Sparks SA. The effect of acute taurine ingestion on 3-km running performance in trained middle-distance runners. Amino Acids. 2013;44(2):555-61. [View at Publisher] [DOI:10.1007/s00726-012-1372-1] [PubMed] [Google Scholar]
24. Ahmadian M, Dabidi Roshan V, Ashourpore E. Taurine Supplementation Improves Functional Capacity, Myocardial Oxygen Consumption, and Electrical Activity in Heart Failure. Journal of dietary supplements. 2017;14(4):422-32. [View at Publisher] [DOI:10.1080/19390211.2016.1267059] [PubMed] [Google Scholar]
25. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG. Selenium: biochemical role as a component of glutathione peroxidase. Science. 1973; 179(4073): 588-90. [View at Publisher] [DOI:10.1126/science.179.4073.588] [PubMed]
26. Templar J, Kon SP, Milligan TP, Newman DJ, Raftery MJ. Increased plasma malondialdehyde levels in glomerular disease as determined by a fully validated HPLC method. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 1999;14(4):946-51. [View at Publisher] [DOI:10.1093/ndt/14.4.946] [PubMed] [Google Scholar]
27. Burger SC, Bertram SR, Stewart RI. Assessment of the 2.4 km run as a predictor of aerobic capacity. South African medical journal = Suid-Afrikaanse tydskrif vir geneeskunde. 1990;78(6):327-9. [View at Publisher] [PubMed] [Google Scholar]
28. Toczewska J, Konopka T. Activity of enzymatic antioxidants in periodontitis: A systematic overview of the literature. Dental and medical problems. 2019;56(4):419-26. [View at Publisher] [DOI:10.17219/dmp/112151] [PubMed] [Google Scholar]
29. Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Health Sci. 2020 Sep;9(5):415-425. [View at Publisher] [DOI:10.1016/j.jshs.2020.04.001] [PubMed] [Google Scholar]
30. Abdel-Daim MM, Dessouki AA, Abdel-Rahman HG, Eltaysh R, Alkahtani S. Hepatorenal protective effects of taurine and N-acetylcysteine against fipronil-induced injuries: the antioxidant status and apoptotic markers expression in rats. Science of the total environment. 2019;650:2063-73. [View at Publisher] [DOI:10.1016/j.scitotenv.2018.09.313] [PubMed] [Google Scholar]
31. Li S, Wei BK, Wang J, Dong G, Wang X. Taurine Supplementation Ameliorates Arsenic-Induced Hepatotoxicity and Oxidative Stress in Mouse. Adv Exp Med Biol. 2019;1155:463-470. [DOI:10.1007/978-981-13-8023-5_43] [PubMed]
32. Mohammadi H, Ommati MM, Farshad O, Jamshidzadeh A, Nikbakht MR, Niknahad H, et al. Taurine and isolated mitochondria: A concentration-response study. Trends in Pharmaceutical Sciences. 2019;5(4):197-206. [View at Publisher] [DOI] [Google Scholar]
33. Wu QD, Wang JH, Fennessy F, Redmond HP, Bouchier-Hayes D. Taurine prevents high-glucose-induced human vascular endothelial cell apoptosis. The American journal of physiology. 1999; 277(6 Pt 1): C1229-38. [View at Publisher] [DOI:10.1152/ajpcell.1999.277.6.C1229] [PubMed] [Google Scholar]
34. Ogasawara M, Nakamura T, Koyama I, Nemoto M, Yoshida T. Reactivity of taurine with aldehydes and its physiological role. Adv Exp Med Biol. 1994;359:71-8. [DOI:10.1007/978-1-4899-1471-2_8] [PubMed] [Google Scholar]
35. Hansen SH. The role of taurine in diabetes and the development of diabetic complications. Diabetes/metabolism research and reviews. 2001;17(5):330-46. [View at Publisher] [DOI:10.1002/dmrr.229] [PubMed] [Google Scholar]
36. Aruoma OI, Halliwell B, Hoey BM, Butler J. The antioxidant action of taurine, hypotaurine and their metabolic precursors. The Biochemical journal. 1988;256(1):251-5. [View at Publisher] [DOI:10.1042/bj2560251] [PubMed] [Google Scholar]
37. Rahman MM, Park HM, Kim SJ, Go HK, Kim GB, Hong CU, et al. Taurine prevents hypertension and increases exercise capacity in rats with fructose-induced hypertension. American journal of hypertension. 2011;24(5):574-81. [View at Publisher] [DOI:10.1038/ajh.2011.4] [PubMed] [Google Scholar]
38. Ommati MM, Farshad O, Jamshidzadeh A, Heidari R. Taurine enhances skeletal muscle mitochondrial function in a rat model of resistance training. PharmaNutrition. 2019;9:100161. [View at Publisher] [DOI:10.1016/j.phanu.2019.100161] [Google Scholar]
39. Heidari R, Arabnezhad MR, Ommati MM, Azarpira N, Ghodsimanesh E, Niknahad H. Boldine supplementation regulates mitochondrial function and oxidative stress in a rat model of hepatotoxicity. Pharmaceutical Sciences. 2019;25(1):1-10. [DOI:10.15171/PS.2019.1] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.