Volume 16, Issue 2 (Mar-Apr 2022)                   mljgoums 2022, 16(2): 27-33 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Khodadadi F, Attarzadeh Hosseini S R, Mosaferi M. Effects of High-Intensity Interval Training on Adropin, Blood Glucose Markers, Insulin Resistance. mljgoums. 2022; 16 (2) :27-33
URL: http://mlj.goums.ac.ir/article-1-1333-en.html
1- Department of Exercise Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
2- Department of Exercise Physiology, Faculty of Sports Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , attarzadeh@um.ac.ir
Abstract:   (470 Views)
Background and objectives: Previous investigations have shown that physical activity can improve insulin sensitivity and body composition by reducing the concentration of inflammatory biomarkers. The study aimed at evaluating effects of eight weeks of resistance training and high-intensity interval training on adropin, blood glucose markers, and body composition in overweight females.
Methods: sixteen overweight females (mean age: 30 ± 4.3 years and body mass index= 29 ± 2.6 kg/m2) were randomly assigned to a resistance training group (n=8) and a high-intensity interval training group (n=8). Participants in both groups trained three times a week for eight weeks. Body composition and serum level of blood markers were determined at baseline and after the last training session.
Results: Body mass, body fat percentage, and waist-hip ratio decreased significantly in both groups (p<0.05). VO2max significantly increased in both groups, while the changes in the resistance training group were greater than in the high-intensity interval training group (p<0.05). Insulin and HOMA-IR concentrations decreased significantly in the resistance training group (p<0.05).
Conclusion: Eight weeks of both training procedures could significantly decrease body composition markers. However, the training duration was not sufficient to alter fating blood sugar or adropin concentrations.
Full-Text [PDF 922 kb]   (144 Downloads) |   |   Full-Text (HTML)  (153 Views)  
Research Article: Original Paper | Subject: Sport Physiology
Received: 2020/09/21 | Accepted: 2020/10/19 | Published: 2022/03/28 | ePublished: 2022/03/28

References
1. Kannel WB. Metabolic risk factors for coronary heart disease in women: perspective from the Framingham Study. American heart journal. 1987;114(2):413-9. [View at Publisher] [DOI:10.1016/0002-8703(87)90511-4] [PubMed] [Google Scholar]
2. Tounian P, Aggoun Y, Dubern B, Varille V, Guy-Grand B, Sidi D, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet. 2001 27;358(9291):1400-4. [View at Publisher] [DOI:10.1016/S0140-6736(01)06525-4] [PubMed] [Google Scholar]
3. Ruth KS, Day FR, Hussain J, Martínez-Marchal A, Aiken CE, Azad A, et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021 ;596(7872):393-397. [DOI:10.1097/00006254-200203000-00018] [PubMed] [Google Scholar]
4. Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol. 2017 ;234(3):R159-R181. [DOI:10.1530/JOE-17-0186] [PubMed] [Google Scholar]
5. Ahmadizad S, Haghighi AH, Hamedinia MR. Effects of resistance versus endurance training on serum adiponectin and insulin resistance index. European journal of Endocrinology. 2007; 157(5): 625-32. [View at Publisher] [DOI:10.1530/EJE-07-0223] [PubMed] [Google Scholar]
6. Nishida T, Tsuji S, Tsujii M, Arimitsu S, Haruna Y, Imano E, et al. Oral glucose tolerance test predicts prognosis of patients with liver cirrhosis. American Journal of Gastroenterology. 2006; 101(1): 70-5. [DOI:10.1111/j.1572-0241.2005.00307.x] [PubMed] [Google Scholar]
7. Judith A. Insulin resistance/Diabetes and HIV and hepatitis C.11th Annual Retrocirus Conference (CROI-Conference on Retroviruses and pportunistic Infections). San Francisco. 2004. [View at Publisher]
8. Spiegelman BM, Flier JS. Adipogenesis and obesity: rounding out the big picture. Cell. 1996; 87(3): 377-89. [DOI:10.1016/S0092-8674(00)81359-8] [PubMed] [Google Scholar]
9. Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature. 1998;395(6704):763. [View at Publisher] [DOI:10.1038/27376] [Google Scholar]
10. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259(5091):87-91. [DOI:10.1126/science.7678183] [PubMed] [Google Scholar]
11. Hotamisligil GS, Spiegelman BM. Tumor necrosis factor α: a key component of the obesity-diabetes link. Diabetes. 1994;43(11):1271-8. [View at Publisher] [DOI:10.2337/diab.43.11.1271] [PubMed] [Google Scholar]
12. Shimomura I, Funahasm T, Takahashi M, Maeda K, Kotani K, Nakamura T, et al. Enhanced expression of PAI-1 in visceral fat: Possible contributor to vascular disease in obeisty. Nature medicine. 1996; 2(7): 800-3. [View at Publisher] [DOI:10.1038/nm0796-800] [PubMed] [Google Scholar]
13. Hotamisligil GS, Arner P, Caro JF, Atkinson RL, Spiegelman BM. Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. The Journal of clinical investigation. 1995;95(5):2409-15. [DOI:10.1172/JCI117936] [PubMed] [Google Scholar]
14. Schnabel RB, Wild PS, Schulz A, Zeller T, Sinning CR, Wilde S, et al. Multiple endothelial biomarkers and noninvasive vascular function in the general population: the Gutenberg Health Study. Hypertension. 2012; 60(2): 288-95. [DOI:10.1161/HYPERTENSIONAHA.112.191874] [PubMed] [Google Scholar]
15. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Gupta M, et al. Adropin is a novel regulator of endothelial function. Circulation. 2010;122(11_suppl_1):S185-S92. [View at Publisher] [DOI:10.1161/CIRCULATIONAHA.109.931782] [PubMed]
16. Lovren F, Pan Y, Quan A, Singh KK, Shukla PC, Al-Omran M, et al. Adropin is a Novel Regulator of Endothelial Function Through the VEGFR2-PI3K-Akt and VEGFR2-Erk1/2 Pathways. Am Heart Assoc; 2010; 122(21): [DOI:10.1161/CIRCULATIONAHA.109.931782] [Google Scholar]
17. Butler AA, Tam CS, Stanhope KL, Wolfe BM, Ali MR, O'Keeffe M, et al. Low circulating adropin concentrations with obesity and aging correlate with risk factors for metabolic disease and increase after gastric bypass surgery in humans. The Journal of Clinical Endocrinology & Metabolism. 2012; 97(10): 3783-91. [DOI:10.1210/jc.2012-2194] [PubMed] [Google Scholar]
18. Kumar KG, Trevaskis JL, Lam DD, Sutton GM, Koza RA, Chouljenko VN, et al. Identification of adropin as a secreted factor linking dietary macronutrient intake with energy homeostasis and lipid metabolism. Cell metabolism. 2008; 8(6): 468-81. [View at Publisher] [DOI:10.1016/j.cmet.2008.10.011] [PubMed] [Google Scholar]
19. Frøsig C. Effect of acute exercise and exercise training on insulin stimulated glucose uptake in human skeletal muscle. 2012.
20. Elmer DJ, Laird RH, Barberio MD, Pascoe DD. Inflammatory, lipid, and body composition responses to interval training or moderate aerobic training. European journal of applied physiology. 2016;116(3):601-9. [View at Publisher] [DOI:10.1007/s00421-015-3308-4] [PubMed] [Google Scholar]
21. Devries MC, Hamadeh MJ, Glover AW, Raha S, Samjoo IA, Tarnopolsky MA. Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free radical biology and medicine. 2008;45(4):503-11. [View at Publisher] [DOI:10.1016/j.freeradbiomed.2008.04.039] [PubMed] [Google Scholar]
22. Poirier P, Després J-P. Exercise in weight management of obesity. Cardiology clinics. 2001; 19(3): 459-70. [DOI:10.1016/S0733-8651(05)70229-0] [PubMed]
23. Fujie S, Hasegawa N, Kurihara T, Sanada K, Hamaoka T, Iemitsu M. Association between aerobic exercise training effects of serum adropin level, arterial stiffness, and adiposity in obese elderly adults. Applied Physiology, Nutrition, and Metabolism. 2017;42(1):8-14. [View at Publisher] [DOI:10.1139/apnm-2016-0310] [PubMed] [Google Scholar]
24. Fujie S, Hasegawa N, Sato K, Fujita S, Sanada K, Hamaoka T, et al. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults. American Journal of Physiology-Heart and Circulatory Physiology. 2015;309(10):H1642-H7. [View at Publisher] [DOI:10.1152/ajpheart.00338.2015] [PubMed] [Google Scholar]
25. Alizadeh R, Golestani N, Moradi L, Rezaeinejad N. Effect of aerobic exercise with maximal fat oxidation intensity, on adropin and insulin resistance among overweight women. Iranian Journal of Endocrinology and Metabolism. 2018;20(2):81-8. [View at Publisher] [Google Scholar]
26. Murach KA, Bagley JR. Skeletal muscle hypertrophy with concurrent exercise training: contrary evidence for an interference effect. Sports medicine. 2016;46(8):1029-39. [View at Publisher] [DOI:10.1007/s40279-016-0496-y] [PubMed] [Google Scholar]
27. Bagheri R, Rashidlamir A, Motevalli MS, Elliott BT, Mehrabani J, Wong A. Effects of upper-body, lower-body, or combined resistance training on the ratio of follistatin and myostatin in middle-aged men. European journal of applied physiology. 2019;119(9):1921-31. [View at Publisher] [DOI:10.1007/s00421-019-04180-z] [PubMed] [Google Scholar]
28. Matthews D, Hosker J, Rudenski A, Naylor B, Treacher D, Turner R. Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9. [View at Publisher] [DOI:10.1007/BF00280883]
29. Cohen J. A power primer. Psychological bulletin. 1992;112(1):155. [View at Publisher] [DOI:10.1037/0033-2909.112.1.155] [Google Scholar]
30. Shaw KA, Gennat HC, O'Rourke P, Del Mar C. Exercise for overweight or obesity. Cochrane database of systematic reviews. 2006. [DOI:10.1002/14651858.CD003817.pub3] [Google Scholar]
31. Ohkawara K, Tanaka S, Miyachi M, Ishikawa-Takata K, Tabata I. A dose-response relation between aerobic exercise and visceral fat reduction: systematic review of clinical trials. International journal of obesity. 2007; 31(12): 1786-97. [View at Publisher] [DOI:10.1038/sj.ijo.0803683] [PubMed] [Google Scholar]
32. Verheggen R, Maessen M, Green DJ, Hermus A, Hopman M, Thijssen D. A systematic review and meta‐analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue. Obesity Reviews. 2016;17(8):664-90. [View at Publisher] [DOI:10.1111/obr.12406] [PubMed] [Google Scholar]
33. Trost SG, Owen N, Bauman AE, Sallis JF, Brown W. Correlates of adults' participation in physical activity: review and update. Medicine & science in sports & exercise. 2002;34(12):1996-2001. [View at Publisher] [DOI:10.1097/00005768-200212000-00020] [PubMed] [Google Scholar]
34. Bacon AP, Carter RE, Ogle EA, Joyner MJ. VO 2 max trainability and high intensity interval training in humans: a meta-analysis. PloS one. 2013;8(9):e73182. [View at Publisher] [DOI:10.1371/journal.pone.0073182] [PubMed] [Google Scholar]
35. Milanović Z, Sporiš G, Weston M. Effectiveness of high-intensity interval training (HIT) and continuous endurance training for VO 2max improvements: a systematic review and meta-analysis of controlled trials. Sports medicine. 2015; 45(10): 1469-81. [View at Publisher] [DOI:10.1007/s40279-015-0365-0] [PubMed] [Google Scholar]
36. Chan HH, Burns SF. Oxygen consumption, substrate oxidation, and blood pressure following sprint interval exercise. Applied Physiology, Nutrition, and Metabolism. 2013; 38(2): 182-7. [View at Publisher] [DOI:10.1139/apnm-2012-0136] [PubMed] [Google Scholar]
37. Gore C, Withers R. The effect of exercise intensity and duration on the oxygen deficit and excess post-exercise oxygen consumption. European journal of applied physiology and occupational physiology. 1990;60(3):169-74. [View at Publisher] [DOI:10.1007/BF00839153] [PubMed] [Google Scholar]
38. Hazell TJ, Olver TD, Hamilton CD, Lemon PW. Two minutes of sprint-interval exercise elicits 24-hr oxygen consumption similar to that of 30 min of continuous endurance exercise. International journal of sport nutrition and exercise metabolism. 2012; 22(4): 276-83. [DOI:10.1123/ijsnem.22.4.276] [PubMed] [Google Scholar]
39. Laforgia J, Withers RT, Gore CJ. Effects of exercise intensity and duration on the excess post-exercise oxygen consumption. Journal of sports sciences. 2006; 24(12): 1247-64. [View at Publisher] [DOI:10.1080/02640410600552064] [PubMed] [Google Scholar]
40. Boutcher SH. High-intensity intermittent exercise and fat loss. Journal of obesity. 2011;2011. [View at Publisher] [DOI:10.1155/2011/868305] [PubMed] [Google Scholar]
41. Zouhal H, Jacob C, Delamarche P, Gratas-Delamarche A. Catecholamines and the effects of exercise, training and gender. Sports medicine. 2008;38(5):401-23. [View at Publisher] [DOI:10.2165/00007256-200838050-00004] [Google Scholar]
42. Galster AD, Clutter WE, Cryer PE, Collins JA, Bier D. Epinephrine plasma thresholds for lipolytic effects in man: measurements of fatty acid transport with [l-13C] palmitic acid. The Journal of clinical investigation. 1981;67(6):1729-38. [View at Publisher] [DOI:10.1172/JCI110211] [PubMed] [Google Scholar]
43. Williams CB, Zelt JG, Castellani LN, Little JP, Jung ME, Wright DC, et al. Changes in mechanisms proposed to mediate fat loss following an acute bout of high-intensity interval and endurance exercise. Applied Physiology, Nutrition, and Metabolism. 2013; 38(12): 1236-44. [View at Publisher] [DOI:10.1139/apnm-2013-0101] [PubMed] [Google Scholar]
44. Paoli A, Moro T, Marcolin G, Neri M, Bianco A, Palma A, et al. High-Intensity Interval Resistance Training (HIRT) influences resting energy expenditure and respiratory ratio in non-dieting individuals. Journal of translational medicine. 2012;10(1):237. [View at Publisher] [DOI:10.1186/1479-5876-10-237] [PubMed] [Google Scholar]
45. Laplante M, Sabatini DM. mTOR signaling at a glance. Journal of cell science. 2009; 122(20): 3589-94. [View at Publisher] [DOI:10.1242/jcs.051011] [PubMed] [Google Scholar]
46. Ozaki H, Loenneke JP, Thiebaud RS, Abe T. Resistance training induced increase in VO 2 max in young and older subjects. European Review of Aging and Physical Activity. 2013; 10(2): 107-16. [View at Publisher] [DOI:10.1007/s11556-013-0120-1] [Google Scholar]
47. Reis VM, Garrido ND, Vianna J, Sousa AC, Alves JV, Marques MC. Energy cost of isolated resistance exercises across low-to high-intensities. PloS one. 2017;12(7):e0181311. [View at Publisher] [DOI:10.1371/journal.pone.0181311] [PubMed] [Google Scholar]
48. Ling CH, de Craen AJ, Slagboom PE, Gunn DA, Stokkel MP, Westendorp RG, et al. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clinical nutrition. 2011;30(5):610-5. [View at Publisher] [DOI:10.1016/j.clnu.2011.04.001] [PubMed] [Google Scholar]
49. Jackson A, Pollock ML, Graves JE, Mahar M. Reliability and validity of bioelectrical impedance in determining body composition. Journal of Applied Physiology. 1988;64(2):529-34. [View at Publisher] [DOI:10.1152/jappl.1988.64.2.529] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.