Volume 15, Issue 4 (Jul-Aug 2021)                   mljgoums 2021, 15(4): 33-38 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

amiri N, Moazzami M, Yaghoubi A. Effect of Eight –Weeks of Resistance Training on Serum Levels of Neurofilament Light Chain and Tau Protein in Women with Multiple Sclerosis. mljgoums 2021; 15 (4) :33-38
URL: http://mlj.goums.ac.ir/article-1-1315-en.html
1- Department of Exercise Physiology, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
2- Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , Moazami@um.ac.ir
3- Department of Exercise Physiology, Bojnourd Branch Islamic Azad University, Bojnourd, Iran
Abstract:   (2172 Views)
Background and objectives: Multiple sclerosis (MS) is a demyelinating and neurodegenerative disease of the centralnervous system that can be tracked through biomarkers of disease status. The present study aimed to examine effect of eight weeks of resistance training on serum levels of neurofilament light chain and tau protein in women with multiple sclerosis (MS).
Methods: The study population consisted of 24 women with MS (aged 25 to 40 years) in Bojnourd (Iran) with expanded disability status scale score of 2-5. Patients were randomly divided into two groups of resistance training (n=12) and control (n=12). The training group performed 45-60 minutes of resistance training, three sessions a week for eight weeks. The control group did not partake in sports activity. Blood samples were taken 24 hours before the first session and 48 hours after the last training session. Analysis of covariance was used to analyze data at a significance level of 0.05.
Results: The eight-week resistance training intervention significantly decreased serum level of tau protein but had no significant effect on serum level of neurofilamet light chain.
Conclusion: According to the research results, eight weeks of resistance training could have favorable effects on serum level of tau protein in MS patients.
Full-Text [PDF 715 kb]   (805 Downloads) |   |   Full-Text (HTML)  (1155 Views)  
Research Article: Original Paper | Subject: Sport Physiology
Received: 2020/08/24 | Accepted: 2020/09/21 | Published: 2021/06/30 | ePublished: 2021/06/30

References
1. Negaresh R, MotlRW, Zimmer P, Mokhtarzade M, Baker JS. Effects of exercise training on multiple sclerosis biomarkers of central nervous system and disease status: a systematic review of intervention studies.European Journal of Neurology. 2019; 26(5): 711-21. [View at Publisher] [DOI:10.1111/ene.13929] [PubMed] [Google Scholar]
2. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nature Reviews Neurology. 2017 Jan;13(1):25. [View at Publisher] [DOI:10.1038/nrneurol.2016.187] [PubMed] [Google Scholar]
3. KamalianLari S, Haghgoo HA, Farzad M, Hosseinzadeh S. Investigation of the validity and reliability of Balance Evaluation Systems Test (BESTest) in assessment of balance disorders in people with multiple sclerosis. Archives of Rehabilitation. 2018;18(4):288-295. [Persion]. [View at Publisher] [DOI:10.21859/jrehab.18.4.3] [Google Scholar]
4. Petrova N, Carassiti D, AltmannDR, Baker D, Schmierer K. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathology. 2018 May;28(3):334-48. [View at Publisher] [DOI:10.1111/bpa.12516] [PubMed] [Google Scholar]
5. Petzold A, Gveric D, Groves M, Schmierer K, Grant D, Chapman M, et al. Phosphorylation and compactness of neurofilaments in multiple sclerosis: indicators of axonal pathology. Experimental neurology. 2008; 213(2): 326-35. [View at Publisher] [DOI:10.1016/j.expneurol.2008.06.008] [PubMed] [Google Scholar]
6. Dujmovic I. Cerebrospinal fluid and blood biomarkers of neuroaxonal damage in multiple sclerosis. Multiple sclerosis international. 2011;2011:767083. [DOI:10.1155/2011/767083] [PubMed] [Google Scholar]
7. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments at a glance. Journal of Cell Science. 2012; 125(Pt 14): 3257-3263. [View at Publisher] [DOI:10.1242/jcs.104729]
8. Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, Groppa S, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 2019; 25(5): 678-686. [DOI:10.1177/1352458518765666] [PubMed] [Google Scholar]
9. Niklas N. Neurofilament light as a marker for neurodegenerative diseases. Diss. Kliniskmikrobiologi, 2004. [Google Scholar]
10. VarhaugKN, Torkildsen Ø, Myhr KM, Vedeler CA. Neurofilament light chain as a biomarker in multiple sclerosis. Frontiers in neurology. 2019; 10: 338. [DOI:10.3389/fneur.2019.00338] [PubMed] [Google Scholar]
11. Dubuisson N, Puentes F, Giovannoni G, Gnanapavan S. Science is 1% inspiration and 99% biomarkers. Mult Scler. 2017; 23(11): 1442-1452. [DOI:10.1177/1352458517709362] [PubMed] [Google Scholar]
12. Derisbourg M, Leghay C, Chiappetta G, Fernandez-Gomez FJ, Laurent C, Demeyer D, et al. Role of the Tau N-terminal region in microtubule stabilization revealed by new endogenous truncated forms. Sci Rep. 2015 May 14;5:9659. [DOI:10.1038/srep09659] [PubMed] [Google Scholar]
13. Peric A, Annaert W. Early etiology of Alzheimer's disease: tipping the balance toward autophagy or endosomal dysfunction? Acta Neuropathol. 2015 ;129(3):363-81. [DOI:10.1007/s00401-014-1379-7] [PubMed] [Google Scholar]
14. Kim DH, Yeo SH, Park JM, Choi JY, Lee TH, Park SY, et al. Genetic markers for diagnosis and pathogenesis of Alzheimer's disease. Gene. 2014 25;545(2):185-93. [View at Publisher] [DOI:10.1016/j.gene.2014.05.031] [PubMed] [Google Scholar]
15. MohammadiZF, Khezri A, Ebrahimzadeh M. The Effects of Voluntary Exercise on a Running Wheel and Allium Paradoxum on Tau Protein in the Cerebellum of Diabetic Rats. Journal of Isfahan Medical School. 2012 Jun 18;30(185).[ persian]. [Google Scholar]
16. Thompson AJ, Baranzini SE, Geurts J, Hemmer B, Ciccarelli O. Multiple sclerosis. Lancet Lond. Engl. 391, 1622-1636.2018. [DOI:10.1016/S0140-6736(18)30481-1]
17. Kjølhede T, Siemonsen S, Wenzel D, Stellmann JP, Ringgaard S, Pedersen BG, et al. Can resistance training impact MRI outcomes in relapsing-remitting multiple sclerosis? Mult Scler. 2018 ;24(10):1356-1365. [DOI:10.1177/1352458517722645] [PubMed] [Google Scholar]
18. Pinho RA, Aguiar AS Jr, Radák Z. Effects of Resistance Exercise on Cerebral Redox Regulation and Cognition: An Interplay Between Muscle and Brain. Antioxidants (Basel). 2019 6;8(11):529. [DOI:10.3390/antiox8110529] [PubMed] [Google Scholar]
19. Gordon J. Long-term Aerobic Exercise Can Enhance Cognition and Delya the Onset of Alzheimer's Disease.2019. [Google Scholar]
20. Ohia-Nwoko O, Montazari S, Lau YS, Eriksen JL. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014 28;9:54. [DOI:10.1186/1750-1326-9-54] [PubMed] [Google Scholar]
21. Conceição MS, Bonganha V, Vechin FC, de Barros Berton RP, Lixandrão ME, NogueiraFR, et al. Long-term treadmill exercise attenuates tau pathology in P301S tau transgenic mice. Mol Neurodegener. 2014; 9: 54.2013;8:1221. [DOI:10.12965/jer.1734896.448] [PubMed] [Google Scholar]
22. Daniele S, Pietrobono D, Fusi J, Lo Gerfo A, Cerri E, Chico L, et al. α-Synuclein Aggregated with Tau and β-Amyloid in Human Platelets from Healthy Subjects: Correlation with Physical Exercise. Front Aging Neurosci. 2018 30;10:17. [DOI:10.3389/fnagi.2018.00017] [PubMed] [Google Scholar]
23. GharariArefi. R, Saghebjoo. M, Hedayati. M, Fathi R. The Role of Aerobic Training and Omega-3 Supplement Intake on Phosphorylated Tau Protein in the Hippocampus of Alzheimer Induced Rats with Homocysteine. Sport Physiology. Fall 2016; 8 (31): 171-88. [Persian]. [DOI:10.22089/spj.2016.814] [Google Scholar]
24. Leem YH, Lim HJ, Shim SB, Cho JY, Kim BS, Han PL. Repression of tau hyperphosphorylation by chronic endurance exercise in aged transgenic mouse model of tauopathies. J Neurosci Res. 2009 15;87(11):2561-70. [View at Publisher] [DOI:10.1002/jnr.22075] [PubMed] [Google Scholar]
25. Liang KY, Mintun MA, Fagan AM, Goate AM, Bugg JM, Holtzman DM,et al. Exercise and Alzheimer's disease biomarkers in cognitively normal older adults. Ann Neurol. 2010 ;68(3):311-8. [View at Publisher] [DOI:10.1002/ana.22096] [PubMed] [Google Scholar]
26. Jensen CS, Portelius E, Høgh P, Wermuth L, Blennow K, Zetterberg H, et al. Effect of physical exercise on markers of neuronal dysfunction in cerebrospinal fluid in patients with Alzheimer's disease. Alzheimers Dement (N Y). 2017 17;3(2):284-290. [View at Publisher] [DOI:10.1016/j.trci.2017.03.007] [PubMed] [Google Scholar]
27. Garcia PC, Real CC, Ferreira AF, Alouche SR, Britto LR, Pires RS. Different protocols of physical exercise produce different effects on synaptic and structural proteins in motor areas of the rat brain. Brain Res. 2012 25;1456:36-48. [View at Publisher] [DOI:10.1016/j.brainres.2012.03.059] [PubMed] [Google Scholar]
28. Kostic M, Zivkovic N, Stojanovic I. Multiple sclerosis and glutamate excitotoxicity. Reviews in the neurosciences. 2013 Feb 1;24(1):71-88. [DOI:10.1515/revneuro-2012-0062] [PubMed] [Google Scholar]
29. Malekzadeh Shafaroudi M, Zarei H, Malekzadeh Shafaroudi A, Karimi N, Abedini M. The Relationship between Glutamate and Multiple Sclerosis. International Biological and Biomedical Journal. 2018 Jan 15;4(1):1-3. ). [ persian]. [View at Publisher] [Google Scholar]
30. Loureiro SO, Heimfarth L, Pelaez Pde L, Vanzin CS, Viana L, Wyse AT, et al. Homocysteine activates calcium-mediated cell signaling mechanisms targeting the cytoskeleton in rat hippocampus. Int J Dev Neurosci. 2008 ;26(5):447-55. [DOI:10.5772/66926] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.