Volume 15, Issue 5 (Sep-Oct 2021)                   mljgoums 2021, 15(5): 27-31 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Zehtabian S, alibakhshi R, Seyedena S Y, Rai A. Development of a New Framework for Health Assessment in Patients with Coronary Artery Disease by using miRNA-197 in Adults. mljgoums 2021; 15 (5) :27-31
URL: http://mlj.goums.ac.ir/article-1-1304-en.html
1- Department of Biology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
2- kermanshah university of medical sciences , ralibakhshiy@gmail.com
3- Department of biology, faculty of Biological science, Islamic Azad University, North Tehran Branch, Tehran, Iran
4- kermanshah university of medical sciences
Abstract:   (3616 Views)
Background and objectives: Coronary artery disease (CAD) refers to stenosis or obstruction of coronary artery due to atherosclerosis or clotting. The aim of this study was to evaluate possible association of serum miRNA-197 (miR-197) expression as a biomarker for CAD diagnosis.
Methods: In this study, 100 patients with CAD who had angiography and vascular transplantation were selected. Expression of miR-197 was evaluated using real-time RT-PCR technique and the SYBR Green method. The Pearson's correlation coefficient was used to determine relationship of miR-197 expression and severity of coronary artery disease. The t-test was used to determine significance of expression of miR-197 in the study groups. All statistical analyses were carried out in SPSS 16 and at significance of 0.05.
Results: The results showed a direct relationship between miR-197 expression and CAD severity. The relative expression of miR-197 in the CAD patients was significantly higher than that in control subjects (P<0.004).
Conclusion: It seems that miR-197 can be considered as an indicator of coronary endothelial cell function. This microRNA could be used as a biomarker for CAD prognosis and treatment progression.
Full-Text [PDF 820 kb]   (661 Downloads) |   |   Full-Text (HTML)  (1116 Views)  
Research Article: Original Paper | Subject: Molecular Medicine
Received: 2020/06/24 | Accepted: 2020/09/19 | Published: 2021/08/31 | ePublished: 2021/08/31

References
1. Kanuri SH, Ipe J, Kassab K, Gao H. Next generation MicroRNA sequencing to identify coronary artery disease patients at risk of recurrent myocardial infarction. Atherosclerosis. 2018 Oct 3;278:232-239. doi: 10.1016/0002-9149(63)90064-X. [View at Publisher] [DOI:10.1016/0002-9149(63)90064-X] [PubMed] [Google Scholar]
2. Maleki A, Ghanavati R, Montazeri M, Forughi S, Nabatchi B. Prevalence of Coronary Artery Disease and the Associated Risk Factors in the Adult Population of Borujerd City, Iran. J Tehran Heart Cent. 2019 ;14(1):1-5. doi: 10.1016/0002-9343(77)90423-5. [View at Publisher] [DOI:10.1016/0002-9343(77)90423-5] [PubMed] [Google Scholar]
3. Christian Albus, Jörg Barkhausen. The Diagnosis of Chronic Coronary Heart Disease. Dtsch Arztebl Int. 2017 ; 114(42): 712-719.doi: 10.1161/01.CIR.67.1.134. [DOI:10.1161/01.CIR.67.1.134] [PubMed] [Google Scholar]
4. Albus C, Barkhausen J, Fleck E, Haasenritter J, Lindner O, Silber S. The Diagnosis of Chronic Coronary Heart Disease. Dtsch Arztebl Int. 2017 20;114(42):712-719. [DOI:10.1161/CIRCULATIONAHA.112.130153] [PubMed] [Google Scholar]
5. Caterina Catalanotto, Carlo Cogoni. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci. 2016 ; 17(10): 1712. doi: 10.1093/omcr/omw036. [View at Publisher] [DOI:10.1093/omcr/omw036] [PubMed] [Google Scholar]
6. Liu H, Lei C, He Q, Pan Z, Xiao D, Tao Y. Nuclear functions of mammalian MicroRNAs in gene regulation, immunity and cancer. Mol Cancer. 2018 22;17(1):64. [View at Publisher] [DOI:10.2353/ajpath.2006.050646] [PubMed] [Google Scholar]
7. Gene expression regulation: lessons from noncoding RNAs. RNA. 2015 ;21(4):695-6. [DOI:10.1055/s-2005-872844] [PubMed] [Google Scholar]
8. Schulte C, Molz S, Appelbaum S, Karakas M, Ojeda F, Lau DM, et al. miRNA-197 and miRNA-223 Predict Cardiovascular Death in a Cohort of Patients with Symptomatic Coronary Artery Disease. PLoS One. 2015 31;10(12) [DOI:10.1242/jcs.184770] [PubMed] [Google Scholar]
9. Lerman G, Sharon M, Leibowitz-Amit R, Sidi Y, Avni D. The crosstalk between IL-22 signaling and miR-197 in human keratinocytes. PLoS One. 2014 10;9(9):e107467. [DOI:10.1097/GIM.0b013e31820ad795] [PubMed] [Google Scholar]
10. Wang H, Su X, Yang M, Chen T, Hou J, Li N, Cao X. Reciprocal control of miR-197 and IL-6/STAT3 pathway reveals miR-197 as potential therapeutic target for hepatocellular carcinoma. Oncoimmunology. 2015 4;4(10):e1031440. [DOI:10.1001/jama.2009.371] [PubMed] [Google Scholar]
11. Wang H, Su X, Yang M, Chen T, Hou J, Li N, et al. Reciprocal control of miR-197 and IL-6/STAT3 pathway reveals miR-197 as potential therapeutic target for hepatocellular carcinoma. Oncoimmunology. 2015 4;4(10) [View at Publisher] [DOI:10.1002/mus.23517] [PubMed] [Google Scholar]
12. Legchenko E, Chouvarine P, Borchert P, Fernandez-Gonzalez A. PPARγ agonist pioglitazone reverses pulmonary hypertension and prevents right heart failure via fatty acid oxidation. Sci Transl Med. 2018 25;10(438). [DOI:10.14503/THIJ-13-3896] [PubMed] [Google Scholar]
13. Jia HL, Liu CW, Zhang L, Xu WJ, Gao XJ, Bai J, Xu YF, Xu MG, Zhang G. Sets of serum exosomal microRNAs as candidate diagnostic biomarkers for Kawasaki disease. Sci Rep. 2017 20;7:44706. [View at Publisher] [DOI:10.4103/0189-7969.187732] [PubMed] [Google Scholar]
14. McManus DD, Rong J, Huan T, Lacey S, Tanriverdi K, Munson PJ, et al. Messenger RNA and MicroRNA transcriptomic signatures of cardiometabolic risk factors. BMC Genomics. 2017 8;18(1):139. [View at Publisher] [DOI:10.14503/THIJ-15-5450] [PubMed] [Google Scholar]
15. Tang T, Cheng Y, She Q, Jiang Y, Chen Y, Yang W, et al. Long non-coding RNA TUG1 sponges miR-197 to enhance cisplatin sensitivity in triple negative breast cancer. Biomed Pharmacother. 2018 ;107:338-346. [View at Publisher] [DOI:10.1093/eurheartj/ehi471] [PubMed] [Google Scholar]
16. Lu X, Liu Z, Ning X, Huang L, Jiang B. The Long Noncoding RNA HOTAIR Promotes Colorectal Cancer Progression by Sponging miR-197. Oncol Res. 2018 10;26(3):473-481. [DOI:10.4244/EIJV8I1A20] [PubMed] [Google Scholar]
17. Zhang Y, Huang S, Li P, Chen Q, Li Y, Zhou Y, et al. Pancreatic cancer-derived exosomes suppress the production of GIP and GLP-1 from STC-1 cells in vitro by down-regulating the PCSK1/3. Cancer Lett. 2018 1;431:190-200. [View at Publisher] [DOI:10.1016/j.canlet.2018.05.027] [PubMed] [Google Scholar]
18. Orlicka-Płocka M, Gurda D, Fedoruk-Wyszomirska A, Smolarek I, Wyszko E. Circulating microRNAs in Cardiovascular Diseases. Acta Biochim Pol. 2016;63(4):725-729. [View at Publisher] [DOI:10.1016/j.jjcc.2015.09.009] [PubMed] [Google Scholar]
19. Tien WP, Lim G, Yeo G, Chiang SN, Chong CS, Ng LC, et al. SYBR green-based one step quantitative real-time polymerase chain reaction assay for the detection of Zika virus in field-caught mosquitoes. Parasit Vectors. 2017 19;10(1):427. [View at Publisher] [DOI:10.1002/ajmg.a.38320] [PubMed] [Google Scholar]
20. Romeiro MF, Souza WM, Tolardo AL, Vieira LC, Colombo TE, Aquino VH, et al. Evaluation and optimization of SYBR Green real-time reverse transcription polymerase chain reaction as a tool for diagnosis of the Flavivirus genus in Brazil. Rev Soc Bras Med Trop. 2016 ;49(3):279-85. [View at Publisher] [DOI:10.1016/j.spen.2006.06.004] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.