Volume 15, Issue 2 (Mar-Apr 2021)                   mljgoums 2021, 15(2): 35-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Biniaz B, abaszadeh H, farzanegi P. Effect of Glucosamine Sulfate Alone and Combined with Moderate Intensity Exercise on Serum Levels of CS 846 Epitope and Cartilage Oligomeric Matrix Protein in a Rat Model of Osteoarthritis. mljgoums 2021; 15 (2) :35-41
URL: http://mlj.goums.ac.ir/article-1-1267-en.html
1- Department of Sport Physiology, Sari Branch, Islamic Azad University, Sari, Iran
2- Department of Sport Physiology, Sari Branch, Islamic Azad University, Sari, Iran , h.abaszade61@gmail.com
Abstract:   (2404 Views)
Background and objectives: Osteoarthritis is the result of a defect in synovial membrane-covered joint tissues. The purpose of this study was to investigate effects of glucosamine sulfate alone and combined with moderate intensity exercise on serum levels of CS 846 epitope and cartilage oligomeric matrix protein (COMP) in a rat model of osteoarthritis.
Methods: In this study, after inducing osteoarthritis in 42 male Wistar rats (weighting 250±300 g, aged 8 to 12 weeks), the rats were randomly divided into five groups: control-healthy, control-patient, patient-exercise, patient-glucosamine and patient-glucosamine-exercise. The training program consisted of 30 minutes of running on a non-slip treadmill at speed of 16 m/min in the first week with progressive overload principle reaching 50 minutes by the eighth week. The glucosamine groups received oral glucosamine sulfate (250 mg/kg/day) once a day for eight consecutive weeks. The serum levels of CS 846 epitope and COMP were measured using commercial ELISA kits. Data were analyzed using one-way ANOVA and Tukey's post hoc test. All statistical analyses were performed in GraghPad prism 8 and at significance level of 0.05.
Results: Combined exercise and glucosamine supplementation caused a significant decrease in the COMP and CS846 levels. This decrease was more profound compared to that of glucosamine and exercise alone.
Conclusion: Overall, the findings of the present study showed that osteoarthritis increases serum COMP and CS 846 levels. In addition, glucosamine supplementation combined with exercise can significantly improve knee osteoarthritis in rats.

Full-Text [PDF 764 kb]   (877 Downloads) |   |   Full-Text (HTML)  (595 Views)  
Research Article: Original Paper | Subject: Sport Physiology
Received: 2019/11/24 | Accepted: 2020/01/27 | Published: 2021/02/28 | ePublished: 2021/02/28

References
1. Das SK, Farooqi A. Osteoarthritis. Best Pract Res Clin Rheumatol. 2008; 22: 657-675. [DOI:10.1016/j.berh.2008.07.002] [PubMed] [Google Scholar]
2. Davatchi F, Jamshidi AR, Banihashemi AT, Gholami J, Forouzanfar MH, Akhlaghi M, et al. WHO-ILAR COPCORD study (stage 1, urban study) in Iran. The Journal of rheumatology. 2008; 35(7): 1384-90. [PubMed] [Google Scholar]
3. Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part II: OARSI evidence-based, expert consensus guidelines. Osteoarthritis and cartilage. 2008; 16(2): 137-62. [DOI:10.1016/j.joca.2007.12.013] [PubMed] [Google Scholar]
4. Zhang W, Nuki G, Moskowitz RW, Abramson S, Altman RD, Arden NK, et al. OARSI recommendations for the management of hip and knee osteoarthritis: part III: Changes in evidence following systematic cumulative update of research published through January 2009. Osteoarthritis and cartilage. 2010; 18(4): 476-99. [DOI:10.1016/j.joca.2010.01.013] [PubMed] [Google Scholar]
5. Ohnishi A, Osaki T, Matahira Y, Tsuka T, Imagawa T, Okamoto Y, Minami S. Evaluation of the chondroprotective effects of glucosamine and fish collagen peptide on a rabbit ACLT model using serum biomarkers. Journal of Veterinary Medical Science. 2012; 75(4): 12. [PubMed] [Google Scholar]
6. Bay-Jensen AC, Sondergaard BC, Christiansen C, Karsdal MA, Madsen SH, Qvist P. Biochemical markers of joint tissue turnover. Assay and drug development technologies. 2010; 8(1): 118-24. [DOI:10.1089/adt.2009.0199] [PubMed] [Google Scholar]
7. Petersen SG, Saxne T, Heinegard D, Hansen M, Holm L, Koskinen S, et al. Glucosamine but not ibuprofen alters cartilage turnover in osteoarthritis patients in response to physical training. Osteoarthritis and Cartilage. 2010; 18(1): 34-40. [DOI:10.1016/j.joca.2009.07.004] [PubMed] [Google Scholar]
8. Lamprecht ED, Williams CA. Biomarkers of antioxidant status, inflammation, and cartilage metabolism are affected by acute intense exercise but not superoxide dismutase supplementation in horses. Oxidative medicine and cellular longevity. 2012 ;2012. [DOI:10.1155/2012/920932] [PubMed] [Google Scholar]
9. Bhatia D, Bejarano T, Novo M. Current interventions in the management of knee osteoarthritis. J Pharm Bioallied Sci. 2013; 5: 30-38. [DOI:10.4103/0975-7406.106561] [PubMed] [Google Scholar]
10. Francois R. Non-pharmacological approches for the treatment of osteoarthritis. Best Pract Res Clin Rheumatol. 2010; 24: 93-106. [DOI:10.1016/j.berh.2009.08.013] [PubMed] [Google Scholar]
11. Dahmer S, Schiller RM. Glucosamine (Review). Am Fam Physician. 2008; 78: 471-476.
12. Bruyere O, Reginster JY. Glucosamine and chondroitin sulfate as therapeutic agents for knee and hip osteoarthritis (Review). Drugs Aging. 2007; 24: 573-580. [DOI:10.2165/00002512-200724070-00005] [PubMed] [Google Scholar]
13. Reginster JY, Bruyere O, Fraikin G, Henrotin Y. Current concepts in the therapeutic management of osteoarthritis with glucosamine (Review). Bull Hosp Jt Dis. 2005; 63: 31-36. [PubMed] [Google Scholar]
14. Herrero-Beaumont G, Ivorra JAR, Trabado MC, Blanco FJ, et al. Glucosamine sulfate in the treatment of knee osteoarthritis symptoms A randomized, double-blind, placebo-controlled study using acetaminophen as a side comparator. Arthritis Rheum. 2007; 56: 555-567. [DOI:10.1002/art.22371] [PubMed] [Google Scholar]
15. Towheed T, Maxwell L, Anastassiades TP, Shea B, et al. Glucosamine therapy for treating osteoarthritis (Review). Cochrane Database Syst Rev. 2005; 18: CD002946. [DOI:10.1002/14651858.CD002946.pub2] [PubMed] [Google Scholar]
16. Mohsin M. Effects of glucosamine sulfate on primary knee osteoarthritis. Al Ameen J Med Sci. 2008; 1: 42-49. [PubMed] [Google Scholar]
17. Hammad YH, Magid HR, Sobhy MM. Clinical and biochemical study of the comparative efficacy of topical versus oral glucosamine/chondroitin sulfate on osteoarthritis of the knee. Egy Rheumatol. 2015; 37: 85-91. [DOI:10.1016/j.ejr.2014.06.007] [PubMed] [Google Scholar]
18. Androeli E, Carpenter CJ, Griggs RC, Bejamin IJ. Cecil essential of medicine. 7th ed. Philadelphia: Saunders. 2007; 845-847. [Google Scholar]
19. Blagojevic M, Jinks C, Jeffery A, Jordan 1. Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis and cartilage. 2010; 18(1): 24-33. [DOI:10.1016/j.joca.2009.08.010] [PubMed] [Google Scholar]
20. Cifuentes DJ, Rocha LG, Silva LA, Brito AC, Rueff-Barroso CR, Porto LC, Pinho RA. Decrease in oxidative stress and histological changes induced by physical exercise calibrated in rats with osteoarthritis induced by monosodium iodoacetate. Osteoarthritis and Cartilage. 2010; 18(8): 1088-95. [DOI:10.1016/j.joca.2010.04.004] [PubMed] [Google Scholar]
21. Galois L, Etienne S, Grossin L, Watrin-Pinzano A, Cournil-Henrionnet C, Loeuille D, et al. Dose-response relationship for exercise on severity of experimental osteoarthritis in rats: a pilot study. Osteoarthritis and cartilage. 2004; 12(10): 779-86. [DOI:10.1016/j.joca.2004.06.008] [PubMed] [Google Scholar]
22. Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology (Oxford). 2005; 44(12): 1531-7. [DOI:10.1093/rheumatology/kei049] [PubMed] [Google Scholar]
23. Malfait AM, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis research & therapy. 2015; 17(1): 225. [DOI:10.1186/s13075-015-0747-6] [PubMed] [Google Scholar]
24. Wen ZH, Tang CC, Chang YC, Huang SY, Hsieh SP, Lee CH, et al. Glucosamine sulfate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes. Osteoarthritis and Cartilage. 2010; 18(9): 1192-202. [DOI:10.1016/j.joca.2010.05.012] [PubMed] [Google Scholar]
25. Ren G, Krawetz RJ. Biochemical Markers for the Early Identification of Osteoarthritis: Systematic Review and Meta-Analysis. Molecular diagnosis & therapy. 2018; 22(6): 671-82. [DOI:10.1007/s40291-018-0362-8] [PubMed] [Google Scholar]
26. Ma T, Zhang Z, Song X, Bai H, Li Y, Li X, Zhao J, Ma Y, Gao L. Combined detection of COMP and CS846 biomarkers in experimental rat osteoarthritis: a potential approach for assessment and diagnosis of osteoarthritis. Journal of orthopaedic surgery and research. 2018; 13(1): 230. [DOI:10.1186/s13018-018-0938-3] [PubMed] [Google Scholar]
27. Al-Dalaen S, Al-Qtaitat A, Al-Rawashdeh M, Alzyoud J, Al-Maathadi A. Rheumatoid arthritis: hyaluronic acid and cartilage oligomeric matrix protein as predictors of the disease progression. Biomedical and Pharmacology Journal. 2016; 9(1): 15-23. [DOI:10.13005/bpj/903] [PubMed] [Google Scholar]
28. Koenig TJ, Dart AJ, McIlwraith CW, Horadagoda N, Bell RJ, Perkins N, et al. Treatment of Experimentally Induced Osteoarthritis in Horses Using an Intravenous Combination of Sodium Pentosan Polysulfate, N‐Acetyl Glucosamine, and Sodium Hyaluronan. Veterinary surgery. 2014; 43(5): 612-22. [DOI:10.1111/j.1532-950X.2014.12203.x] [PubMed] [Google Scholar]
29. Naito K, Watari T, Furuhata A, Yomogida S, Sakamoto K, Kurosawa H, et al. Evaluation of the effect of glucosamine on an experimental rat osteoarthritis model. Life sciences. 2010; 86(13-14): 538-43. [DOI:10.1016/j.lfs.2010.02.015] [PubMed] [Google Scholar]
30. Arti HR, Azemi ME. Comparing the effect of glucosamine and glucosamine with alendronate in symptomatic relieve of degenerative knee joint disease: a double-blind randomized clinical trial study. Jundishapur journal of natural pharmaceutical products. 2012; 7(3): 87. [DOI:10.5812/jjnpp.3405] [PubMed] [Google Scholar]
31. Andersson ML, Thorstensson CA, Roos EM, Petersson IF, Heinegård D, Saxne T. Serum levels of cartilage oligomeric matrix protein (COMP) increase temporarily after physical exercise in patients with knee osteoarthritis. BMC Musculoskeletal disorders. 2006; 7(1): 98. [DOI:10.1186/1471-2474-7-98] [PubMed] [Google Scholar]
32. Kersting UG, Stubendorff JJ, Schmidt MC, Brüggemann GP. Changes in knee cartilage volume and serum COMP concentration after running exercise. Osteoarthritis and cartilage. 2005; 13(10): 925-34. [DOI:10.1016/j.joca.2005.06.005] [PubMed] [Google Scholar]
33. Mündermann A, King KB, Smith RL, Andriacchi TP. Change in serum COMP concentration due to ambulatory load is not related to knee OA status. Journal of Orthopaedic Research. 2009; 27(11): 1408-13. [DOI:10.1002/jor.20908] [Google Scholar]
34. Roberts HM. The Effect of Exercise and Ageing on Morphology and Biomarkers of Knee Articular Cartilage in Healthy Humans. Bangor University (United Kingdom); 2017. [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.