Volume 15, Issue 1 (Jan-Feb 2021)                   mljgoums 2021, 15(1): 45-53 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

alinejad H, abbassi daloii A, farzanegi P, abdi A. Response of Cardiac Tissue β-catenin and GSK-3β to Aerobic Training and Hyaluronic Acid in Knee OA Model Rats. mljgoums 2021; 15 (1) :45-53
URL: http://mlj.goums.ac.ir/article-1-1261-en.html
1- islamic azad university
2- islamic azad university , abbasi.daloii@gmail.com
Abstract:   (2237 Views)
Background and Objective: Osteoarthritis (OA) and cardiovascular disease (CVD) are highly prevalent. The purpose of the present study was to investigate the effect of regular aerobic training and hyaluronic acid on cardiac tissue Wnt signaling pathway in experimental model of knee OA.
Methods: 42 male rats were divided into 6 groups (7 in each group): 1) control, 2) patient, 3) salin, 4) HA, 5) exercise, and 6) exercise + HA. In the training groups, the OA model was first induced, followed by 5 days of running on the treadmill for 5 weeks. Hyaluronic acid was injected intra-articularly. After 12 to 14 hours of fasting and 72 hours after the last training session, cardiac tissue sampling was performed for β-catenin and glycogen synthase kinase-3 (GSK-3β) analysis. The expression of the β-catenin and GSK-3β genes in the cardiac tissue was analyzed by RT-PCR. Data analysis was performed using one-way ANOVA if  a significant difference was observed by Tukey's post hoc test (P <0.05).
Results: Induction of OA in rats led to a significant increase in β-catenin gene  and a significant decrease in cardiac tissue GSK3 gene compared to healthy control group. The results also showed that regular aerobic training, hyaluronic acid injection, and a combination of both treatments reduced the cateninβ gene and  increased the cardiac tissue GSK3 gene compared to the rats of OA group.
Conclusion: Regular aerobic training in combination with hyaluronic acid may exert its protective effect by reducing the expression of β-catenin and increasing the expression of cardiac tissue GSK-3β gene ; this may be  caused by the heart disease in the model, empirically preventing osteoarthritis.
Full-Text [PDF 965 kb]   (657 Downloads)    
Research Article: Original Paper | Subject: Sport Physiology
Received: 2019/10/30 | Accepted: 2020/01/20 | Published: 2021/01/1 | ePublished: 2021/01/1

References
1. Karaarslan F, Ozkuk K, Seringec Karabulut S, Bekpinar S, Zeki Karagulle, Nergis Erdogan M. How does spa treatment affect cardiovascular function and vascularMendothelium in patients with generalized osteoarthritis? A pilot study through plasma asymmetric di-methyl arginine (ADMA) and L-arginine/ADMA ratio. CrossMark, International Journal of Biometeorology. 2018; 62: 833-842. [DOI:10.1007/s00484-017-1484-0] [PubMed] [Google Scholar]
2. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular diseases: a historical perspective. Lancet. 2014; 383(9921): 999-1008. [DOI:10.1016/S0140-6736(13)61752-3] [PubMed] [Google Scholar]
3. Veronese N, Cereda E, Maggi S, Luchini C, Solmi M, Smith T, et al. Osteoarthritis and mortality: a prospective cohort study and systematic review with meta-analysis. Semin Arthritis Rheum. 2016; 46(2):160-167. [DOI:10.1016/j.semarthrit.2016.04.002] [PubMed] [Google Scholar]
4. Wang H, Bai J, He B, Hu X, Liu D. Osteoarthritis and the risk of cardiovascular disease: a meta-analysis of observational studies. Sci Rep. 2016; 6(1): 39672. [DOI:10.1038/srep39672] [PubMed] [Google Scholar]
5. Xiao L, Zhou D, Tan RJ, Fu H, Zhou L, Hou FF, et al.Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. . J Am Soc Nephrol. 2016; 27(6): 1727-40. [DOI:10.1681/ASN.2015040449] [PubMed] [Google Scholar]
6. Tan RJ, Zhou D, Zhou L, Liu Y. Wnt/β-catenin signaling and kidney fibrosis. Kidney Int Suppl. 2014; 4(1): 84-90. [DOI:10.1038/kisup.2014.16] [PubMed] [Google Scholar]
7. Bastakoty D, Saraswati S, Joshi P, Atkinson J, Feoktistov I, Liu J, et al. Temporary, Systemic Inhibition of the WNT/β-Catenin Pathway promotes Regenerative Cardiac Repair following Myocardial Infarct. Cell Stem Cells Regen Med. 2016; 2(2):10.16966/2472-6990.111. [DOI:10.16966/2472-6990.111] [PubMed] [Google Scholar]
8. Dell'accio F, De Bari C, Eltawil NM, Vanhummelen P, Pitzalis C. Identification of the molecular response of articular cartilage to injury, by microarray screening: Wnt-16 expression and signaling after injury and in osteoarthritis. Arthritis Rheum. 2008; 58(5):1410-1421. [DOI:10.1002/art.23444] [PubMed] [Google Scholar]
9. Gessert S, Kühl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res. 2010; 107(2): 186-99. [DOI:10.1161/CIRCRESAHA.110.221531] [PubMed] [Google Scholar]
10. Zhu Z, Aitken D, Cicuttini F, Jones G, Ding C. Ambulatory activity interacts with common risk factors for osteoarthritis to modify increases in MRI-detected osteophytes. Osteoarthritis Cartilage. 2019; 27(4): 650-658. [DOI:10.1016/j.joca.2018.12.023] [PubMed] [Google Scholar]
11. Nicola's Lillo, Gonzalo Palomo-Ve'lez, Eduardo Fuentes, Iva'n Palomo. Role of physical activity in cardiovascular disease prevention in older adults. Sport Sci Health. 30 July (2015). DOI 10.1007/s11332-015-0233-1. [Google Scholar]
12. Sattelmair J, Pertman J, Ding EL, Kohl HW 3rd, Haskell W, Lee IM. Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation. 2011; 124: 789-795. [DOI:10.1161/CIRCULATIONAHA.110.010710] [PubMed] [Google Scholar]
13. Artinian NT, Fletcher GF, Mozaffarian D, Kris-Etherton P, Van Horn L, Lichtenstein AH, et al. Interventions to promote physical activity and dietary lifestyle changes for cardiovascular risk factor reduction in adults: a scientific statement from the American Heart Association. Circulation. 2010; 122: 406-441 [DOI:10.1161/CIR.0b013e3181e8edf1] [PubMed] [Google Scholar]
14. Spillanea M, Schwarz N, Willoughby DS. Upper-body resistance exercise augments vastuslateralis androgen receptor-DNA binding andcanonical Wnt/β-catenin signaling compared tolower-body resistance exercise in resistance-trainedmen without an acute increase in serumtestosterone. Steroids. 2015; 98: 63-71. [DOI:10.1016/j.steroids.2015.02.019] [Google Scholar]
15. Leal ML, Lamas L, Aoki MS, Ugrinowitsch C, Ramos MSC, Tricoli V, et al. Effect of differentresistance-training regimens on the WNT-signalingpathway. Eur J Appl Physiol 2011; 111: 2535-45. [DOI:10.1007/s00421-011-1874-7] [Google Scholar]
16. Brack AS, Conboy MJ, Roy S, Lee M, Kuo CJ,Keller C. Increased Wnt signaling during agingalters muscle stem cell fate and increasesfibrosis. Science. 2007; 317(5839): 807-10. [DOI:10.1126/science.1144090] [PubMed] [Google Scholar]
17. Fujimaki S, Hidaka R, Asashima M, Takemasa T, Kuwabara1 T. Wnt-Mediated Satellite Cell Conversion in Adult and Aged MiceFollowing Voluntary Wheel Running. JBC Papers in Press. Published on January 30. 2014; M113.539247. [PubMed] [Google Scholar]
18. Amin H, Vachris J, Hamilton A, Steuerwald N, Howden R, Arthur ST. GSK3β inhibition andLEF1 upregulation in skeletal muscle following about of downhill running. J Physiol Sci. 2014; 64(1): 1-11. [DOI:10.1007/s12576-013-0284-5] [PubMed] [Google Scholar]
19. Hashemi SS, Rajabi S, Mahmoudi R, Ghanbari A, Jafari Barmak M. The Investigation of Proliferation of Fibroblasts onئChitosan Scaffold in the Presence of Hyaluronic Acid. Armaghane-danesh. 2018; 23(2): 134-145. [PubMed] [Google Scholar]
20. Suhaeb AM, Naveen S, Mansor A, Kamarul T. Hyaluronic acid with or without bone marrow derived-mesenchymal stem cells improves osteoarthritic knee changes in rat model: a preliminary report. Indian J Exp Biol. 2012; 50(6): 383-90. [PubMed] [Google Scholar]
21. Fernandes GS, Valdes AM. Cardiovascular disease and osteoarthritis: common pathways and patient outcomes. Eur J Clin Invest. 2015; 45(4): 405-14. [DOI:10.1111/eci.12413] [Google Scholar]
22. Lietman C, Wu B, Lechner S, Shinar A, Sehgal M, Rossomacha E, et al. Inhibition of Wnt/β-catenin signaling ameliorates osteoarthritis in a murine model of experimental osteoarthritis. JCI Insight. 2018; 3(3): e96308. [DOI:10.1172/jci.insight.96308] [PubMed] [Google Scholar]
23. Zhao Y, Wang C, Wang C, Hong X, Miao J, Liao Y, et al. An essential role for Wnt/β-catenin signaling in mediating hypertensive heart disease. Sci Rep. 2018; 8(1): 8996. [DOI:10.1038/s41598-018-27064-2] [PubMed] [Google Scholar]
24. Bashiri J, NourAzar A, Purrazi H. Effect of three months aerobic training on Wnt-signaling pathway in skeletal muscle of male rats. RJMS. 2017; 24(160):7-16 [Google Scholar]
25. Vissing K, McGee S, Farup J, KjolhedeT, Vendelbo M, Jessen N. Differentiated mTOR butnot AMPK signaling after strength vs enduranceexercise in training-accustomed individuals. Scand J Med Sci Sports. 2013; 23(3): 355-66. [DOI:10.1111/j.1600-0838.2011.01395.x] [Google Scholar]
26. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, et al. Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR andPI(3)K/Akt/GSK3 pathways. Nat Cell Biol. 2001; 3:1009-13. [DOI:10.1038/ncb1101-1009] [PubMed] [Google Scholar]
27. Petropoulos H, Skerjanc IS. Beta-catenin is essential and sufficient for skeletal myogenesis in P19 cells. J Biol Chem. 2002; 277: 15393-9. [DOI:10.1074/jbc.M112141200] [PubMed] [Google Scholar]
28. Fujimaki S, Wakabayashi T, Asashima M, Takemasa T, Kuwabara T. Treadmill running induces satellite cell activation in diabetic mice. Biochem Biophys Rep. 2016; 8: 6-13. [DOI:10.1016/j.bbrep.2016.07.004] [PubMed] [Google Scholar]
29. Pourrazi H, Asgharpour-arshad M. Effect of dietary restriction with or without exercise training on β-catenin and glycogen synthase kinase-3β gene expression in skeletal muscle of male rats. Razi J Med Sci. 2019: 26(1): 78-88. [Google Scholar]
30. Linseman DA, Butts BD, Precht TA, PhelpsRA, Le SS, Laessig TA, et al. Glycogen synthasekinase-3β phosphorylates Bax and promotes itsmitochondrial localization during neuronalapoptosis. J Neurosci. 2004; 24: 9993-10002. [DOI:10.1523/JNEUROSCI.2057-04.2004] [PubMed] [Google Scholar]
31. Beurel E, Jope RS. The paradoxical pro- andanti-apoptotic actions of GSK3 in the intrinsic andextrinsic apoptosis signaling pathways. ProgNeurobiol. 2006; 79(4): 173-89. [DOI:10.1016/j.pneurobio.2006.07.006] [PubMed] [Google Scholar]
32. Sadeghipour F, Gharakhanlo R, Rahmati M, Movahhedin M. The effect of six weeks endurance training on GSK-3β gene expression in the motor spinal cord of male Wistar rats with diabetes neuropathy. Sport Biosciences. 2018; 9(1): 333-349. [Google Scholar]
33. Dae-Young Kim, Sun-Young Jung, Kijeong Kim, Chang-Ju Kim. Treadmill exercise ameliorates Alzheimer disease-associated memory loss through the Wnt signaling pathway in the streptozotocin-induced diabetic rats. Journal of Exercise Rehabilitation 2016; 12(4): 276-283. [DOI:10.12965/jer.1632678.339] [PubMed] [Google Scholar]
34. Stranahan AM, Lee K, Becker KG, Zhang Y, Maudsley S, Martin B, et al. Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiol Ag‌ing. 2010; 31: 1937-1949. [DOI:10.1016/j.neurobiolaging.2008.10.016] [PubMed] [Google Scholar]
35. Tiwari SK, Agarwal S, Seth B, Yadav A, Nair S, Bhatnagar P, et al. Curcumin-loaded nanoparti‌cles potently induce adult neurogenesis and reverse cognitive deficits in Alzheimer's disease model via canonical Wnt/β-catenin pathway. ACS Nano. 2014; 8: 76-103. [DOI:10.1021/nn405077y] [PubMed] [Google Scholar]
36. Lo GH, LaValley M, McAlindon T, Felson DT. Intra-articular hyaluronic acid in treatment of knee osteoarthritis:a meta-analysis. JAMA. 2003; 290: 3115-21. [DOI:10.1001/jama.290.23.3115] [PubMed] [Google Scholar]
37. Ghosh P, Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are theeffects molecular weight dependent? Semin Arthritis Rheum. 2002; 32: 10-37. [DOI:10.1053/sarh.2002.33720] [PubMed] [Google Scholar]
38. Goldberg VM, Buckwalter JA. Hyaluronans in the treatment of osteoarthritis of the knee: evidence fordiseasemodifying activity. Osteoarthritis Cartilage. 2005; 13: 216-24. [DOI:10.1016/j.joca.2004.11.010] [PubMed] [Google Scholar]
39. Listrat V, Ayral X, Patarnello F, Bonvarlet JP, Simonnet J, Amor B, et al. Arthroscopic evaluation of potentialstructure modifying activity of hyaluronan (Hyalgan) in osteoarthritis of the knee. Osteoarthritis Cartilage.1997; 5: 153-60. [DOI:10.1016/S1063-4584(97)80010-6] [PubMed] [Google Scholar]
40. Guidolin DD, Ronchetti IP, Lini E, Guerra D, Frizziero L. Morphological analysis of articular cartilage biopsies from arandomized, clinical study comparing the effects of 500-730 kDasodium hyaluronate (Hyalgan) and methylprednisolone acetate on primary osteoarthritis of the knee. Osteoarthritis Cartilage. 2001; 9(4): 371-81. [DOI:10.1053/joca.2000.0398] [PubMed] [Google Scholar]
41. Takahashi K, Hashimoto S, Kubo T, Hirasawa Y, Lotz M, Amiel D. Hyaluronan suppressed nitric oxide production in the meniscus and synovium of rabbit osteoarthritis model. J Orthop Res. 2001; 19(3): 500-3. [DOI:10.1016/S0736-0266(00)90024-X] [PubMed] [Google Scholar]
42. Díaz-Gallego L, Prieto JG, Coronel P, Gamazo LE, Gimeno M, Alvarez AI. Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment. J Orthop Res. 2005; 23(6): 1370-6. [DOI:10.1016/j.orthres.2005.05.003.1100230619] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.