Volume 14, Issue 5 (Sep-Oct 2020)                   mljgoums 2020, 14(5): 35-41 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdanian M, Moazzami M, Shabani M, Cheragh Birjandi S. The Effect of Eight-Week Aerobic Exercise before Cerebral Ischemia on the Expression of NT-3 and TrkC Genes in Male Rats. mljgoums 2020; 14 (5) :35-41
URL: http://mlj.goums.ac.ir/article-1-1235-en.html
1- MSc of exercise physiology, Department of Physical Education and Sport Sciences, , Islamic Azad University, Bojnourd Branch, Bojnord , Iran
2- Associate Professor in Sport Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran , mahtab.moazami@gmail.com
3- Department of Sport Sciences, University of Bojnord, Bojnord, Iran
4- Department of Sport Sciences, Islamic Azad University, Bojnourd Branch, Bojnourd, Iran
Abstract:   (2490 Views)
Background & Objective: Cerebral ischemia causes irreversible structural and functional damages in certain areas of the brain, especially the hippocampus. Evidence indicates that physical exercise may reduce the damages caused by cerebral ischemia. The purpose of this study was to examine the effect of 8-week exercise preconditioning on the expression of NT-3 and TrkC genes in the CA1 region of the hippocampus after the cerebral ischemic-reperfusion in male rats.
Methods: Twenty-one male Wistar rats weighing 250-300 gr were randomly selected and divided into three groups (healthy control, control + ischemia and exercise + ischemia). Rats in the exercise group ran on a treadmill 5 days per week for 8 weeks. Ischemia by occlusion of both common carotid arteries (CCA) was created for 45 minutes. In order to evaluate the gene expression, Real time PCR technique was used.
Findings: NT-3 gene expression was significantly different between exercise + ischemia with control + ischemia groups and control + ischemia with healthy control groups (P <0.05), and TrkC gene expression was significantly different between exercise + ischemia with healthy control groups and control + ischemia with healthy control groups (P <0.05).
Conclusion: The results of this study demonstrated that exercise before the induction of ischemic stroke increased the NT-3 gene expression but did not influence the TrKC gene expression.
 
Full-Text [PDF 908 kb]   (561 Downloads)    
Research Article: Original Paper | Subject: Sport Physiology
Received: 2019/07/29 | Accepted: 2019/09/1 | Published: 2020/08/24 | ePublished: 2020/08/24

References
1. Elzawahry H, Hernandez- Frau PE, Behrouz R, Clark MW. Reperfusion Injery in Stroke. Emedicine. 2011. Available form: http://emedicine.medscape.com/article/11624337-overview. Accessed Agust 08, 2013.
2. Yokobori S, Mazzeo AT, Hosein K, GajavelliS, Dietrich WD, Bullock MR. Preconditioning forTraumatic Brain Injury. Transl Stroke Res. 2013; 4(1): 25-39. https://doi.org/10.1007/s12975-012-0226-1 [DOI:10.1007/s12975-012-0226-1.]
3. Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004; 187:65S-70S. https://doi.org/10.1016/S0002-9610(03)00306-4 [DOI:10.1016/S0002-9610(03)00306-4.]
4. Kawaguchi C, Takizawa S, Niwa K, Iwamaoto T, Kuwahira I, Kato H, Shinohara Y. Regional vulnerability to chronic hypoxia and chronic hypoperfusion in the rat brain. Apathophysiology. 2002; 8:249-253. https://doi.org/10.1016/S0928-4680(02)00014-7 [DOI:10.1016/S0928-4680 (02)00014-7.]
5. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003 111:1843-51. https://doi.org/10.1172/JCI200317977 [DOI:10.1172/JCI200317977.]
6. Schäbitz W-Rd, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007; 38(7): 2165-72. https://doi.org/10.1161/STROKEAHA.106.477331 [DOI:10.1161/STROKEAHA.106.477331.]
7. Ferreira AFB, Real CC, Rodrigues, AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity. Brain research. 2011; (1425): 111-122. https://doi.org/10.1016/j.brainres.2011.10.004 [DOI:10.1016/j.brainres.2011.10.004.]
8. Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Progress in neurobiology. 2003; 69(5): 341-74. https://doi.org/10.1016/S0301-0082(03)00019-4 [DOI:10.1016/S0301-0082(03)00019-4.]
9. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. Apr. 2010; 70(5):271-88. https://doi.org/10.1002/dneu.20774 [DOI:10.1002/dneu.20774.]
10. Davis W, Mahale S, Carranza A, Cox B, Hayes K, Jimenez D, et al. Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res. 2003; 29(4): 382-7. https://doi.org/10.1179/016164107X204701 [DOI:10.1179/016164107X204701.]
11. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, et al., Exercise preconditioning reduces neuronal apoptosis I n stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience. 2010; 166(4): 1091-1100. https://doi.org/10.1016/j.neuroscience.2009.12.067 [DOI:10.1016/j.neuroscience.2009.12.067.]
12. Kochanski R, Dornbos D, Ding Y. Neuroprotection and physical preconditioning Exercise, Hypothermia, and hyperthermia. Innate Tolerance in the CNS. 2013; 105-131. https://doi.org/10.1007/978-1-4419-9695-4_5 [DOI:10.1007/978-1-4419-9695-4_5.]
13. Bang OY. Multimodal MRI for ischemic stroke: from acute therapy to preventive strategies. J Clin Neurol. 2009; 5(3): 107-119. https://doi.org/10.3988/jcn.2009.5.3.107 [DOI:10.3988/jcn.2009.5.3.107.]
14. Williams-Karnesky RL, Stenzel-Poore MP. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Current neuropharmacology. 2009; 7(3): 217-27. https://doi.org/10.2174/157015909789152209 [DOI:10.2174/157015909789152209.]
15. Broughton BR, Lim R, Arumugam TV, Drummond GR, Wallace EM, Sobey CG. Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells. Frontiers in cellular neuroscience. 2013; 6: 66. https://doi.org/10.3389/fncel.2012.00066 [DOI:10.3389/fncel.2012.00066.]
16. Jia J, Hu YS, Wu Y, Yu HX, Liu G, Zhu DN, et al. Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats. Exp Brain Res. 2010; 204(2):173-9. https://doi.org/10.1007/s00221-010-2320-5 [DOI:10.1007/s00221-010-2320-5.]
17. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in the search of treatments. Neuron. 2010; 67 (2): 181-98. https://doi.org/10.1016/j.neuron.2010.07.002 [DOI:10.1016/j.neuron.2010.07.002.]
18. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol neurobiolo. 2001; 24(1-3): 107-29. https://doi.org/10.1385/MN:24:1-3:107 [DOI:10.1385/MN:24:1-3:107.]
19. Saito K, Suyama K, Nishida K, Sei Y, Basile AS. Early increases in TNF-α, IL-6 and IL-1β levels following transient cerebral ischemia in gerbil brain. Neuroscience letters. 1996; 206(2-3):149-52. https://doi.org/10.1016/S0304-3940(96)12460-5 [DOI:10.1016/S0304-3940(96)12460-5.]
20. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003; 62(2):127-36. https://doi.org/10.1093/jnen/62.2.127 [DOI:10.1093/jnen/62.2.127.]
21. Dirnagl U, Macleod MR. Stroke research at a road block: the streets from adversity should be paved with meta‐analysis and good laboratory practice. British journal of pharmacology. 2009; 157(7): 1154-6. https://doi.org/10.1111/j.1476-5381.2009.00211.x [DOI:10.1111/j.1476-5381.2009.00211.x.]
22. Zhao B-Q, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007; 38(2): 748-52. https://doi.org/10.1161/01.STR.0000253500.32979.d1 [DOI:10.1161/01.STR.0000253500.32979.d1.]
23. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007; 8(3): 221-33. https://doi.org/10.1038/nrm2125 [DOI:10.1038/nrm2125.]
24. Zhang F, Jia J, Wu Y, Hu Y, Wang Y. The effect of treadmill training pre-exercise on glutamate receptor expression in rats after cerebral ischemia. International journal of molecular sciences. 2010; 11(7): 2658-69. https://doi.org/10.3390/ijms11072658 [DOI:10.3390/ijms11072658.]
25. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004; 109(2): 220-6. https://doi.org/10.1161/01.CIR.0000109141.48980.37 [DOI:10.1161/01.CIR.0000109141.48980.37.]
26. Deister C, Schmidt CE. Optimizing neurotrophic factor combinations for neurite outgrowth. J Neural Eng. 2006; 3(2): 172. https://doi.org/10.1088/1741-2560/3/2/011 [DOI:10.1088/1741-2560/3/2/011.]
27. Kochanski R, Dornbos D, Ding Y. Neuroprotection and physical preconditioning: Exercise, Hypothermia, and hyperthermia. Innate Tolerance in the CNS: Springer; 2013; 105-31. https://doi.org/10.1007/978-1-4419-9695-4_5 [DOI:10.1007/978-1-4419-9695-4_5.]
28. Chan K-M, Lam D-TN, Pong K, Widmer HR, Hefti F. Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochemical research. 1996; 21(7): 763-7. https://doi.org/10.1007/BF02532298 [DOI:10.1007/BF02532298.]
29. Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol. 2010; 61(5): 533-41.
30. Ding Y, Li J, Luan X, Ding Y, Lai Q, Rafols J, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004; 124(3): 583-91. https://doi.org/10.1016/j.neuroscience.2003.12.029 [DOI:10.1016/j.neuroscience.2003.12.029.]
31. GoAmez-pinilla F, Ying Z, Opazo P, Roy RR, Edgerton R. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. European Journal of Neuroscience. 2001; 13: 1078-1084. https://doi.org/10.1046/j.0953-816x.2001.01484.x [DOI:10.1046/j.0953-816x.2001.01484.x.]
32. Ying z, Roy RR, Edgerton R, Gomez-pinilla F. Voluntary Exercise Increases Neurotrophin-3 and its receptor TrKc in the spinal cord. Brain Research. 2003; 987: 93-9. https://doi.org/10.1016/S0006-8993(03)03258-X [DOI:10.1016/S0006-8993(03)03258-X.]
33. Jia J, Hu Y-S, Wu Y, Liu G, Yu H-X, Zheng Q-P, et al. Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia. Life sciences. 2009; 84(15-16): 505-11. https://doi.org/10.1016/j.lfs.2009.01.015 [DOI:10.1016/j.lfs.2009.01.015.]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.