1. Elzawahry H, Hernandez- Frau PE, Behrouz R, Clark MW. Reperfusion Injery in Stroke. Emedicine. 2011. Available form: http://emedicine.medscape.com/article/11624337-overview. Accessed Agust 08, 2013.
2. Yokobori S, Mazzeo AT, Hosein K, GajavelliS, Dietrich WD, Bullock MR. Preconditioning forTraumatic Brain Injury. Transl Stroke Res. 2013; 4(1): 25-39.
https://doi.org/10.1007/s12975-012-0226-1 [
DOI:10.1007/s12975-012-0226-1.]
3. Mustoe T. Understanding chronic wounds: a unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg. 2004; 187:65S-70S.
https://doi.org/10.1016/S0002-9610(03)00306-4 [
DOI:10.1016/S0002-9610(03)00306-4.]
4. Kawaguchi C, Takizawa S, Niwa K, Iwamaoto T, Kuwahira I, Kato H, Shinohara Y. Regional vulnerability to chronic hypoxia and chronic hypoperfusion in the rat brain. Apathophysiology. 2002; 8:249-253.
https://doi.org/10.1016/S0928-4680(02)00014-7 [
DOI:10.1016/S0928-4680 (02)00014-7.]
5. Sun Y, Jin K, Xie L, Childs J, Mao XO, Logvinova A, et al. VEGF-induced neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest. 2003 111:1843-51.
https://doi.org/10.1172/JCI200317977 [
DOI:10.1172/JCI200317977.]
6. Schäbitz W-Rd, Steigleder T, Cooper-Kuhn CM, Schwab S, Sommer C, Schneider A, et al. Intravenous brain-derived neurotrophic factor enhances poststroke sensorimotor recovery and stimulates neurogenesis. Stroke. 2007; 38(7): 2165-72.
https://doi.org/10.1161/STROKEAHA.106.477331 [
DOI:10.1161/STROKEAHA.106.477331.]
7. Ferreira AFB, Real CC, Rodrigues, AC, Alves AS, Britto LRG. Short-term, moderate exercise is capable of inducing structural, bdnf-independent hippocampal plasticity. Brain research. 2011; (1425): 111-122.
https://doi.org/10.1016/j.brainres.2011.10.004 [
DOI:10.1016/j.brainres.2011.10.004.]
8. Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Progress in neurobiology. 2003; 69(5): 341-74.
https://doi.org/10.1016/S0301-0082(03)00019-4 [
DOI:10.1016/S0301-0082(03)00019-4.]
9. Cohen-Cory S, Kidane AH, Shirkey NJ, Marshak S. Brain-derived neurotrophic factor and the development of structural neuronal connectivity. Dev Neurobiol. Apr. 2010; 70(5):271-88.
https://doi.org/10.1002/dneu.20774 [
DOI:10.1002/dneu.20774.]
10. Davis W, Mahale S, Carranza A, Cox B, Hayes K, Jimenez D, et al. Exercise pre-conditioning ameliorates blood-brain barrier dysfunction in stroke by enhancing basal lamina. Neurol Res. 2003; 29(4): 382-7.
https://doi.org/10.1179/016164107X204701 [
DOI:10.1179/016164107X204701.]
11. Liebelt B, Papapetrou P, Ali A, Guo M, Ji X, Peng C, et al., Exercise preconditioning reduces neuronal apoptosis I n stroke by up-regulating heat shock protein-70 (heat shock protein-72) and extracellular-signal-regulated-kinase 1/2. Neuroscience. 2010; 166(4): 1091-1100.
https://doi.org/10.1016/j.neuroscience.2009.12.067 [
DOI:10.1016/j.neuroscience.2009.12.067.]
12. Kochanski R, Dornbos D, Ding Y. Neuroprotection and physical preconditioning Exercise, Hypothermia, and hyperthermia. Innate Tolerance in the CNS. 2013; 105-131.
https://doi.org/10.1007/978-1-4419-9695-4_5 [
DOI:10.1007/978-1-4419-9695-4_5.]
13. Bang OY. Multimodal MRI for ischemic stroke: from acute therapy to preventive strategies. J Clin Neurol. 2009; 5(3): 107-119.
https://doi.org/10.3988/jcn.2009.5.3.107 [
DOI:10.3988/jcn.2009.5.3.107.]
14. Williams-Karnesky RL, Stenzel-Poore MP. Adenosine and stroke: maximizing the therapeutic potential of adenosine as a prophylactic and acute neuroprotectant. Current neuropharmacology. 2009; 7(3): 217-27.
https://doi.org/10.2174/157015909789152209 [
DOI:10.2174/157015909789152209.]
15. Broughton BR, Lim R, Arumugam TV, Drummond GR, Wallace EM, Sobey CG. Post-stroke inflammation and the potential efficacy of novel stem cell therapies: focus on amnion epithelial cells. Frontiers in cellular neuroscience. 2013; 6: 66.
https://doi.org/10.3389/fncel.2012.00066 [
DOI:10.3389/fncel.2012.00066.]
16. Jia J, Hu YS, Wu Y, Yu HX, Liu G, Zhu DN, et al. Treadmill pre-training suppresses the release of glutamate resulting from cerebral ischemia in rats. Exp Brain Res. 2010; 204(2):173-9.
https://doi.org/10.1007/s00221-010-2320-5 [
DOI:10.1007/s00221-010-2320-5.]
17. Moskowitz MA, Lo EH, Iadecola C. The science of stroke: mechanisms in the search of treatments. Neuron. 2010; 67 (2): 181-98.
https://doi.org/10.1016/j.neuron.2010.07.002 [
DOI:10.1016/j.neuron.2010.07.002.]
18. Sattler R, Tymianski M. Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol neurobiolo. 2001; 24(1-3): 107-29.
https://doi.org/10.1385/MN:24:1-3:107 [
DOI:10.1385/MN:24:1-3:107.]
19. Saito K, Suyama K, Nishida K, Sei Y, Basile AS. Early increases in TNF-α, IL-6 and IL-1β levels following transient cerebral ischemia in gerbil brain. Neuroscience letters. 1996; 206(2-3):149-52.
https://doi.org/10.1016/S0304-3940(96)12460-5 [
DOI:10.1016/S0304-3940(96)12460-5.]
20. Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol. 2003; 62(2):127-36.
https://doi.org/10.1093/jnen/62.2.127 [
DOI:10.1093/jnen/62.2.127.]
21. Dirnagl U, Macleod MR. Stroke research at a road block: the streets from adversity should be paved with meta‐analysis and good laboratory practice. British journal of pharmacology. 2009; 157(7): 1154-6.
https://doi.org/10.1111/j.1476-5381.2009.00211.x [
DOI:10.1111/j.1476-5381.2009.00211.x.]
22. Zhao B-Q, Tejima E, Lo EH. Neurovascular proteases in brain injury, hemorrhage and remodeling after stroke. Stroke. 2007; 38(2): 748-52.
https://doi.org/10.1161/01.STR.0000253500.32979.d1 [
DOI:10.1161/01.STR.0000253500.32979.d1.]
23. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007; 8(3): 221-33.
https://doi.org/10.1038/nrm2125 [
DOI:10.1038/nrm2125.]
24. Zhang F, Jia J, Wu Y, Hu Y, Wang Y. The effect of treadmill training pre-exercise on glutamate receptor expression in rats after cerebral ischemia. International journal of molecular sciences. 2010; 11(7): 2658-69.
https://doi.org/10.3390/ijms11072658 [
DOI:10.3390/ijms11072658.]
25. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004; 109(2): 220-6.
https://doi.org/10.1161/01.CIR.0000109141.48980.37 [
DOI:10.1161/01.CIR.0000109141.48980.37.]
26. Deister C, Schmidt CE. Optimizing neurotrophic factor combinations for neurite outgrowth. J Neural Eng. 2006; 3(2): 172.
https://doi.org/10.1088/1741-2560/3/2/011 [
DOI:10.1088/1741-2560/3/2/011.]
27. Kochanski R, Dornbos D, Ding Y. Neuroprotection and physical preconditioning: Exercise, Hypothermia, and hyperthermia. Innate Tolerance in the CNS: Springer; 2013; 105-31.
https://doi.org/10.1007/978-1-4419-9695-4_5 [
DOI:10.1007/978-1-4419-9695-4_5.]
28. Chan K-M, Lam D-TN, Pong K, Widmer HR, Hefti F. Neurotrophin-4/5 treatment reduces infarct size in rats with middle cerebral artery occlusion. Neurochemical research. 1996; 21(7): 763-7.
https://doi.org/10.1007/BF02532298 [
DOI:10.1007/BF02532298.]
29. Zoladz JA, Pilc A. The effect of physical activity on the brain derived neurotrophic factor: from animal to human studies. J Physiol Pharmacol. 2010; 61(5): 533-41.
30. Ding Y, Li J, Luan X, Ding Y, Lai Q, Rafols J, et al. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neuroscience. 2004; 124(3): 583-91.
https://doi.org/10.1016/j.neuroscience.2003.12.029 [
DOI:10.1016/j.neuroscience.2003.12.029.]
31. GoAmez-pinilla F, Ying Z, Opazo P, Roy RR, Edgerton R. Differential regulation by exercise of BDNF and NT-3 in rat spinal cord and skeletal muscle. European Journal of Neuroscience. 2001; 13: 1078-1084.
https://doi.org/10.1046/j.0953-816x.2001.01484.x [
DOI:10.1046/j.0953-816x.2001.01484.x.]
32. Ying z, Roy RR, Edgerton R, Gomez-pinilla F. Voluntary Exercise Increases Neurotrophin-3 and its receptor TrKc in the spinal cord. Brain Research. 2003; 987: 93-9.
https://doi.org/10.1016/S0006-8993(03)03258-X [
DOI:10.1016/S0006-8993(03)03258-X.]
33. Jia J, Hu Y-S, Wu Y, Liu G, Yu H-X, Zheng Q-P, et al. Pre-ischemic treadmill training affects glutamate and gamma aminobutyric acid levels in the striatal dialysate of a rat model of cerebral ischemia. Life sciences. 2009; 84(15-16): 505-11.
https://doi.org/10.1016/j.lfs.2009.01.015 [
DOI:10.1016/j.lfs.2009.01.015.]