Volume 12, Issue 1 (Jan-Feb 2018)                   mljgoums 2018, 12(1): 21-26 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Vahidi Emami H, Khalilian M, Yadollahi Movahhed N. Antibiotic Resistance Patterns and Prevalence of PER and VEB Resistance Genes among Clinical Isolates of ESBL-Producing Acinetobacter Baumannii . mljgoums 2018; 12 (1) :21-26
URL: http://mlj.goums.ac.ir/article-1-1049-en.html
1- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran
2- Department of Microbiology, Faculty of Biological Science, Shahid Beheshti University, Tehran, Iran , m.khalilian88@yahoo.com
Abstract:   (18787 Views)
ABSTRACT
         Background and Objectives: Acinetobacter species are responsible for a wide range of clinical complications in hospitalized patients. Antimicrobial treatment of clinical strains of Acinetobacter baumannii may be compromised due to multiple-drug resistance to b-lactams. Aim of this study was to determine antibiotic resistance patterns and frequency of PER and VEB genes in A. baumannii isolates from hospitalized patients.
          Methods: In this cross-sectional study, 100 clinical strains of A. baumannii were isolated from patients hospitalized in Qom (Iran) using specific culture media and biochemical tests. The disk diffusion method was performed to determine resistance to some antibiotics. Minimum inhibitory concentration (MIC) for cefepime and ceftazidime was evaluated. Identification of ESBL-producing strains and presence of the PER and VEB genes were determined by combined disk test and polymerase chain reaction, respectively.
         Results: The isolates were highly resistant against cefixime, ceftriaxone and cefepime. Lowest level of resistance was against polymyxin B. In addition, 70% of the isolates were multi-drug resistant. MIC<128 µg/ml to ceftazidime and cefepime was observed in 84% and 91% of the strains, respectively. Moreover, 21% of the strains were ESBL-positive and frequency of the PER and VEB genes was 47% and 32%, respectively.
        Conclusion: Majority of A. baumannii isolates are highly resistant to the tested antibiotics. Due to presence of the PER and VEB genes in the isolated strains, there is the possibility of resistance spread to other bacteria. Therefore, it is recommended to modify the consumption pattern for antibiotics and pay more attention to standards of nosocomial infection control.
         Keywords: Acinetobacter baumannii, Drug resistance, PER, VEB.
Full-Text [PDF 738 kb]   (1980 Downloads)    
Research Article: Original Paper |
Received: 2018/02/24 | Accepted: 2018/02/24 | Published: 2018/02/24 | ePublished: 2018/02/24

References
1. Wallace L, Daugherty SC, Nagaraj S, Johnson JK, Harris AD, Rasko DA. Use of Comparative Genomics To Characterize the Diversity of Acinetobacter baumannii Surveillance Isolates in a Health Care Institution. Antimicrobial Agents and Chemotherapy. 2016; 60(10): 5933-41. doi: 10.1128/AAC.00477-16. [DOI:10.1128/AAC.00477-16]
2. Wang H, Guo P, Sun H, Wang H, Yang Q, Chen M, et al. Molecular epidemiology of clinical isolates of carbapenem-resistant Acinetobacter spp. from Chinese hospitals. Antimicrobial Agents and Chemotherapy. 2007; 51(11): 4022-8. [DOI:10.1128/AAC.01259-06]
3. Murray PR, Baron EJ, Jorgensen J, Landry M, Pfaller M. Manual of clinical microbiology. ASM Press: Washington,DC. 2006(Ed. 9):1-1267.
4. Bou G, Oliver A, Martínez-Beltrán J. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumanniiclinical strain. Antimicrobial Agents and Chemotherapy. 2000; 44(6): 1556-61. [DOI:10.1128/AAC.44.6.1556-1561.2000]
5. Fagon J-Y, Chastre J, Domart Y, Trouillet J-L, Gibert C. Mortality due to ventilator-associated pneumonia or colonization with Pseudomonas or Acinetobacter species: assessment by quantitative culture of samples obtained by a protected specimen brush. Clinical infectious diseases. 1996; 23(3): 538-42. [DOI:10.1093/clinids/23.3.538]
6. Gastmeier P, Schwab F, Bärwolff S, Rüden H, Grundmann H. Correlation between the genetic diversity of nosocomial pathogens and their survival time in intensive care units. Journal of Hospital Infection. 2006;62(2):181-6. DOI:10.1016/j.jhin.2005.08.010. [DOI:10.1016/j.jhin.2005.08.010]
7. Coia J, Duckworth G, Edwards D, Farrington M, Fry C, Humphreys H, et al. Guidelines for the control and prevention of meticillin-resistant Staphylococcus aureus (MRSA) in healthcare facilities. Journal of Hospital Infection. 2006; 63 (Suppl 1): S1-44. [DOI:10.1016/j.jhin.2006.01.001]
8. Landman D, Quale JM, Mayorga D, Adedeji A, Vangala K, Ravishankar J, et al. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Archives of internal medicine. 2002; 162(13): 1515-20. [DOI:10.1001/archinte.162.13.1515]
9. Carmeli Y, Troillet N, Eliopoulos GM, Samore MH. Emergence of antibiotic-resistant Pseudomonas aeruginosa: comparison of risks associated with different antipseudomonal agents. Antimicrobial Agents and Chemotherapy. 1999; 43(6): 1379-82.
10. Thirapanmethee K. Extended spectrum β-lactamases: critical tools of bacterial resistance. Mahidol Univ J Pharm Sci. 2012; 39(1): 1-8.
11. Naas T, Poirel L, Nordmann P. Minor extended‐spectrum β‐lactamases. Clinical microbiology and infection. 2008; 14(1): 42-52. [DOI:10.1111/j.1469-0691.2007.01861.x]
12. Bali EB, Accedil L, Sultan N. Phenotypic and molecular characterization of SHV, TEM, CTX-M and extended-spectrum-lactamase produced by Escherichia coli, Acinobacter baumannii and Klebsiella isolates in a Turkish hospital. African Journal of Microbiology Research. 2010; 4(8): 650-4.
13. Baygloo NS, Bouzari M, Rahimi F, Abedini F, Yadegari S, Soroushnia M, et al. Identification of Genomic Species of Acinetobacter Isolated from Burns of ICU Patients. Archives of Iranian Medicine (AIM). 2015; 18(10):638-42. doi: 0151810/AIM.005.
14. Wayne P. Performance standards for antimicrobial susceptibility testing:Twenty-second informational supplement. CLSI document M100-S22. Clinical Laboratory Standards institue. 2012; 32(3): 1-126.
15. Swenson JM, Killgore GE, Tenover FC. Antimicrobial susceptibility testing of Acinetobacter spp. by NCCLS broth microdilution and disk diffusion methods. Journal of clinical microbiology. 2004; 42(11): 5102-8. DOI:10.1128/JCM.42.11.5102-5108.2004. [DOI:10.1128/JCM.42.11.5102-5108.2004]
16. Shakibaie MR, Adeli S, Salehi MH. Antibiotic resistance patterns and extended-spectrum β-lactamase production among Acinetobacter spp. isolated from an intensive care Unit of a hospital in Kerman, Iran. Antimicrobial resistance and infection control. 2012;1(1):1. doi: 10.1186/2047-2994-1-1. [DOI:10.1186/2047-2994-1-1]
17. Alikhani MY, Tabar ZK, Mihani F, Kalantar E, Karami P, Sadeghi M, et al. Antimicrobial resistance patterns and prevalence of blaPER-1 and blaVEB-1 genes among ESBL-producing Pseudomonas aeruginosa isolates in West of Iran. Jundishapur Journal of Microbiology. 2014; 7(1): e8888. doi: 10.5812/jjm.8888. [DOI:10.5812/jjm.8888]
18. Constantiniu S, Romaniuc A, Chiriac R, Berea C, Kalis O, Rezus E, et al. Antibacterial antibodies for some enterobacteria in sera of patients with reactive arthritis and other rheumatoid diseases. Roum Arch Microbiol Immunol. 2008; 67(1-2): 30-5.
19. Rit K, Saha R. Multidrug-resistant acinetobacter infection and their susceptibility patterns in a tertiary care hospital. Nigerian Medical Journal. 2012; 53(3): 126-8. doi: 10.4103/0300-1652.104379. [DOI:10.4103/0300-1652.104379]
20. Perez F, Hujer AM, Hujer KM, Decker BK, Rather PN, Bonomo RA. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy. 2007;51(10):3471-84. DOI:10.1128/AAC.01464-06. [DOI:10.1128/AAC.01464-06]
21. Begum S, Hasan F, Hussain S, Shah AA. Prevalence of multi drug resistant Acinetobacter baumannii in the clinical samples from Tertiary Care Hospital in Islamabad, Pakistan. Pakistan journal of medical sciences. 2013; 29(5): 1253-1258.
22. Dally S, Lemuth K, Kaase M, Rupp S, Knabbe C, Weile J. DNA microarray for genotyping antibiotic resistance determinants in Acinetobacter baumannii clinical isolates. Antimicrobial Agents and Chemotherapy. 2013; 57(10): 4761-8. doi: 10.1128/AAC.00863-13. [DOI:10.1128/AAC.00863-13]
23. Kamalbeik S, Talaie H, Mahdavinejad A, Karimi A, Salimi A. Multidrug-resistant Acinetobacter baumannii infection in intensive care unit patients in a hospital with building construction: is there an association? Korean journal of anesthesiology. 2014; 66(4): 295-9. doi: 10.4097/kjae.2014.66.4.295. [DOI:10.4097/kjae.2014.66.4.295]
24. Shahcheraghi F, Abbasalipour M, Feizabadi M, Ebrahimipour G, Akbari N. Isolation and genetic characterization of metallo-β-lactamase and carbapenamase producing strains of Acinetobacter baumannii from patients at Tehran hospitals. Iranian journal of microbiology. 2011; 3(2): 68-74.
25. Lee K, Yong D, Jeong SH, Chong Y. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens. Yonsei Med J. 2011; 25(6): 879-91. doi: 10.3349/ymj.2011.52.6.879. [DOI:10.3349/ymj.2011.52.6.879]
26. Sinha M, Srinivasa H, Macaden R. Antibiotic resistance profile & extended spectrum beta-lactamase (ESBL) production in Acinetobacter species. Indian journal of medical research. 2007; 126(1): 63-7.
27. Kim J, Heo S, Jin J, Choi C, Lee Y, Jeong Y, et al. Characterization of Acinetobacter baumannii carrying blaOXA‐23, blaPER‐1 and armA in a Korean hospital. Clinical microbiology and infection. 2008; 14(7): 716-8. [DOI:10.1111/j.1469-0691.2008.02022.x]
28. Farajnia S, Azhari F, Alikhani MY, Hosseini MK, Peymani A, Sohrabi N. Prevalence of PER and VEB type extended spectrum betalactamases among multidrug resistant Acinetobacter baumannii isolates in North-West of Iran. Iranian journal of basic medical sciences. 2013; 16(6): 751-5.
29. Pasterán F, Rapoport M, Petroni A, Faccone D, Corso A, Galas M, et al. Emergence of PER-2 and VEB-1a in Acinetobacter baumannii strains in the Americas. Antimicrobial Agents and Chemotherapy. 2006; 50(9): 3222-4. doi: 10.1128/AAC.00284-06. [DOI:10.1128/AAC.00284-06]
30. Poirel L, Corvec S, Rapoport M, Mugnier P, Petroni A, Pasteran F, et al. Identification of the novel narrow-spectrum β-lactamase SCO-1 in Acinetobacter spp. from Argentina. Antimicrobial Agents and Chemotherapy. 2007; 51(6): 2179-84. doi: 10.1128/AAC.01600-06. [DOI:10.1128/AAC.01600-06]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.