In press (Jan-Feb)                   Back to the articles list | Back to browse issues page

XML Print


Lovely Professional University, Phagwara, Punjab, India , kaurkiran.971997@gmail.com
Abstract:   (173 Views)
Abstract
Escherichia coli is a Gram-negative, rod-shaped bacterium, responsible for 90% of all community-acquired infections and 50% of hospital-acquired infections, with opportunistic infections found in intensive care unit (ICU) patients. The β-lactam antibiotics, which inhibit cell wall synthesis, are known for their high efficacy and broad-spectrum activity. They also have low toxicity and provide long-term effects, making them widely used drugs against Gram-negative bacteria. Bacteria develop resistance to β-lactams primarily through the expression of hydrolytic enzymes, called β-lactamases, which are divided into serine β-lactamases (classes A, C, and D) and metallo-β-lactamases (class B), based on their molecular mechanism. This study aimed to clarify the mechanism of action of β-lactams against Gram-negative bacilli and to emphasize the multidrug resistance of cephalosporins and carbapenems to E. coli.

 
     
Research Article: Review Article | Subject: Microbiology
Received: 2022/07/11 | Accepted: 2024/01/24

References
1. Oberoi L, Singh N, Sharma P, Aggarwal A. ESBL, MBL and Ampc β lactamases producing superbugs - Havoc in the intensive care units of Punjab India. J. Clin. Diagnostic Res. 2013; 7(1): 70-73. [View at Publisher] [DOI] [PMID] [Google Scholar]
2. Bush K, Bradford PA. Epidemiology of β-lactamase-producing pathogens. Clinical microbiology reviews. 2020; 33(2): 10-128. [View at Publisher] [DOI] [PMID] [Google Scholar]
3. Buxeraud J, Faure S. Beta lactam antibiotics. Actual Pharm. 2016; 55(558s): 1-5. [View at Publisher] [DOI] [Google Scholar]
4. Kolhapure R, Kumar A, Rajkumar H. Coexpression of ESBL, Amp C and MBL in gram negative bacilli. Int. J. Res. Med. Sci. 2015; 3(10): 2698-2703. [View at Publisher] [DOI] [Google Scholar]
5. Rubee Chanu T, Shah PK, Soni S, Ghosh A. Phenotypic detection of extended spectrum, AmpC, Metallo beta-lactamases and their coexistence in clinical isolates of commonly isolated gram negativebacteria in GKGH hospital, Bhuj. IP Int J Med Microbiol Trop Dis. 2019; 5(1): 52-56. [View at Publisher] [DOI] [Google Scholar]
6. Karigoudar RM, Karigoudar MH, Wavare SM, Mangalgi SS. Detection of biofilm among uropathogenic Escherichia coli and its correlation with antibiotic resistance pattern. Journal of laboratory physicians. 2019; 11(01): 017-22. [View at Publisher] [DOI] [PMID] [Google Scholar]
7. Nagarjuna D, Mittal G, Dhanda RS, Verma PK, Gaind R, Yadav M. Faecal Escherichia coli isolates show potential to cause endogenous infection in patients admitted to the ICU in a tertiary care hospital. New Microbes New Infect. 2015; 7: 57-66. [View at Publisher] [DOI] [PMID] [Google Scholar]
8. Chakraborty A, Saralaya V, Adhikari P, Shenoy S, Baliga S, Hegde A. Characterization of Escherichia coli Phylogenetic Groups Associated with Extraintestinal Infections in South Indian Population. Ann Med Health Sci Res. 2015; 5(4): 241-6. [View at Publisher] [DOI] [PMID] [Google Scholar]
9. Tamang MD, Nam HM, Jang GC, Kim SR, Chae MH, Jung SC, et al. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamase-producing Escherichia coli isolated from stray dogs in South Korea. Antimicrob Agents Chemother. 2012; 56(5): 2705-12. [View at Publisher] [DOI] [PMID] [Google Scholar]
10. Tewari R, Mitra S, Ganaie F, Das S, Chakraborty A, Venugopal N, et al. Dissemination and characterisation of Escherichia coli producing extended-spectrum β-lactamases, AmpC β-lactamases and metallo-β-lactamases from livestock and poultry in Northeast India: A molecular surveillance approach. J Glob Antimicrob Resist. 2019; 17: 209-215. [View at Publisher] [DOI] [PMID] [Google Scholar]
11. Tooke CL, Hinchliffe P, Bragginton EC, Colenso CK, Hirvonen VHA, Takebayashi Y, Spencer J. β-Lactamases and β-Lactamase Inhibitors in the 21st Century. J Mol Biol. 2019; 431(18): 3472-3500. [View at Publisher] [DOI] [PMID] [Google Scholar]
12. El Shamy AA, Zakaria Z, Tolba MM, Salah Eldin N, Rabea AT, Tawfick MM, et al. AmpC β-Lactamase Variable Expression in Common Multidrug-Resistant Nosocomial Bacterial Pathogens from a Tertiary Hospital in Cairo, Egypt. Int J Microbiol. 2021; 2021: 6633888. [View at Publisher] [DOI] [PMID] [Google Scholar]
13. Fisher JF, Meroueh SO, Mobashery S. Bacterial resistance to beta-lactam antibiotics: compelling opportunism, compelling opportunity. Chem Rev. 2005; 105(2): 395-424. [View at Publisher] [DOI] [PMID] [Google Scholar]
14. Pfeifer Y, Cullik A, Witte W. Resistance to cephalosporins and carbapenems in Gram-negative bacterial pathogens. Int J Med Microbiol. 2010; 300(6): 371-9. [View at Publisher] [DOI] [PMID] [Google Scholar]
15. Pitout JD, Sanders CC, Sanders WE Jr. Antimicrobial resistance with focus on beta-lactam resistance in gram-negative bacilli. Am J Med. 1997; 103(1): 51-9. [View at Publisher] [DOI] [PMID] [Google Scholar]
16. Zmarlicka MT, Nailor MD, Nicolau DP. Impact of the New Delhi metallo-beta-lactamase on beta-lactam antibiotics. Infect Drug Resist. 2015; 8: 297-309. [View at Publisher] [DOI] [PMID] [Google Scholar]
17. Yamasaki K, Komatsu M, Abe N, Fukuda S, Miyamoto Y, Higuchi T, et al. Laboratory surveillance for prospective plasmid-mediated AmpC beta-lactamases in the Kinki region of Japan. J Clin Microbiol. 2010; 48(9): 3267-73. [View at Publisher] [DOI] [PMID] [Google Scholar]
18. Carcione D, Siracusa C, Sulejmani A, Leoni V, Intra J. Old and New Beta-Lactamase Inhibitors: Molecular Structure, Mechanism of Action, and Clinical Use. Antibiotics (Basel). 2021; 10(8): 995. [View at Publisher] [DOI] [PMID] [Google Scholar]
19. Madec JY, Haenni M, Nordmann P, Poirel L. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect. 2017; 23(11): 826-833. [View at Publisher] [DOI] [PMID] [Google Scholar]
20. Jacoby GA. AmpC beta-lactamases. Clin Microbiol Rev. 2009; 22(1): 161-82. [View at Publisher] [DOI] [PMID] [Google Scholar]
21. Rodríguez-Guerrero E, Callejas-Rodelas JC, Navarro-Marí JM, Gutiérrez-Fernández J. Systematic Review of Plasmid AmpC Type Resistances in Escherichia coli and Klebsiella pneumoniae and Preliminary Proposal of a Simplified Screening Method for ampC. Microorganisms. 2022; 10(3): 611. [View at Publisher] [DOI] [PMID] [Google Scholar]
22. Jacoby GA. MINIREVIEW ␤ -Lactamase Nomenclature. 2006; 50(4): 1123-1129.
23. Helmy MM, Wasfi R. Phenotypic and molecular characterization of plasmid mediated AmpC β-lactamases among Escherichia coli, Klebsiella spp., and Proteus mirabilis isolated from urinary tract infections in Egyptian hospitals. Biomed Res Int. 2014;2014:171548. [View at Publisher] [DOI] [PMID] [Google Scholar]
24. Kaur DC, Puri JS, Kulkarni SS, Jayawant A. Prevalence of AmpC Β-lactamases in clinical isolates of E. coli from a tertiary care rural hospital. Int. J. Pharm. Pharm. Sci. 2015; 7(6): 165-168. [Google Scholar]
25. Peleg AY, Franklin C, Bell JM, Spelman DW. Dissemination of the metallo-beta-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. Clin Infect Dis. 2005; 41(11): 1549-56. [View at Publisher] [DOI] [PMID] [Google Scholar]
26. Labovská S. Pseudomonas aeruginosa as a Cause of Nosocomial Infections. InPseudomonas aeruginosa-Biofilm Formation, Infections and Treatments 2021. IntechOpen. [View at Publisher] [DOI] [Google Scholar]
27. Coll P, Pérez JL, Oliver A. Molecular epidemiology and mechanisms of carbapenem resistance in Pseudomonas aeruginosa isolates from Spanish hospitals. Antimicrob Agents Chemother. 2007; 51(12): 4329-35. [View at Publisher] [DOI] [PMID] [Google Scholar]
28. Miriagou V, Tzelepi E, Gianneli D, Tzouvelekis LS. Escherichia coli with a self-transferable, multiresistant plasmid coding for metallo-beta-lactamase VIM-1. Antimicrob Agents Chemother. 2003; 47(1): 395-7. [View at Publisher] [DOI] [PMID] [Google Scholar]
29. Lincopan N, McCulloch JA, Reinert C, Cassettari VC, Gales AC, Mamizuka EM. First isolation of metallo-beta-lactamase-producing multiresistant Klebsiella pneumoniae from a patient in Brazil. J Clin Microbiol. 2005; 43(1): 516-9. [DOI] [PMID] [Google Scholar]
30. Lima LM, Silva BNMD, Barbosa G, Barreiro EJ. β-lactam antibiotics: An overview from a medicinal chemistry perspective. Eur J Med Chem. 2020; 208: 112829. [View at Publisher] [DOI] [PMID] [Google Scholar]
31. [31] N. Dame, "b -LACTAM ANTIBIOTICS," 2010.
32. Balsalobre L, Blanco A, Alarcón T. Beta-lactams. Antibiot. Drug Resist. 2019; 57-72. [View at Publisher] [DOI] [PMID] [Google Scholar]
33. Fratoni AJ, Nicolau DP, Kuti JL. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacotherapy. 2021; 41(2): 220-233. [View at Publisher] [DOI] [PMID] [Google Scholar]
34. Neu HC. Relation of structural properties of beta-lactam antibiotics to antibacterial activity. Am J Med. 1985; 79(2A): 2-13. [View at Publisher] [DOI] [PubMed] [Google Scholar]
35. Garde S, Chodisetti PK, Reddy M. Peptidoglycan: structure, synthesis, and regulation. EcoSal Plus. 2021; 9(2). [View at Publisher] [DOI] [PMID] [Google Scholar]
36. Schriefer EM. Molekulare und biochemische Charakterisierung der β -Laktamasen von Yersinia enterocolitica und deren Sekretionsverhalten der Bayerischen Julius-Maximilians-Universität Würzburg Eva-Maria Schriefer aus Coburg. 2012. [View at Publisher] [Google Scholar]
37. Meini S, Tascini C, Cei M, Sozio E, Rossolini GM. AmpC β-lactamase-producing Enterobacterales: what a clinician should know. Infection. 2019; 47(3): 363-375. [View at Publisher] [DOI] [PMID] [Google Scholar]
38. Frye JG, Jackson CR. Genetic mechanisms of antimicrobial resistance identified in Salmonella enterica, Escherichia coli, and Enteroccocus spp. isolated from U.S. food animals. Front Microbiol. 2013; 4: 135. [View at Publisher] [DOI] [PMID] [Google Scholar]
39. Corvec S, Caroff N, Espaze E, Marraillac J, Reynaud A. -11 Mutation in the ampC promoter increasing resistance to beta-lactams in a clinical Escherichia coli strain. Antimicrob Agents Chemother. 2002; 46(10): 3265-7. [View at Publisher] [DOI] [PMID] [Google Scholar]
40. Siu LK, Lu PL, Chen JY, Lin FM, Chang SC. High-level expression of ampC beta-lactamase due to insertion of nucleotides between -10 and -35 promoter sequences in Escherichia coli clinical isolates: cases not responsive to extended-spectrum-cephalosporin treatment. Antimicrob Agents Chemother. 2003; 47(7): 2138-44. [View at Publisher] [DOI] [PMID] [Google Scholar]
41. Mocktar C, Govinden U, Sturm AW, Essack S. The effect of mutations in the AmpC promoter region on β-lactam resistance from an Escherichia coli clinical isolate in a public sector hospital in KwaZulu-Natal, South Africa. African J. Biotechnol. 2008; 7(15): 2547-2550. [View at Publisher] [Google Scholar]
42. Aitha M, Al-Adbul-Wahid S, Tierney DL, Crowder MW. Probing substrate binding to the metal binding sites in metallo-β-lactamase L1 during catalysis. Medchemcomm. 2016; 7(1): 194-201. [View at Publisher] [DOI] [PMID] [Google Scholar]
43. Bebrone C. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol. 2007; 74(12): 1686-701. [View at Publisher] [DOI] [PMID] [Google Scholar]
44. Fonseca F, Bromley EH, Saavedra MJ, Correia A, Spencer J. Crystal structure of Serratia fonticola Sfh-I: activation of the nucleophile in mono-zinc metallo-β-lactamases. J Mol Biol. 2011; 411(5): 951-9. [View at Publisher] [DOI] [PMID] [Google Scholar]
45. Queenan AM, Bush K. Carbapenemases: the versatile beta-lactamases. Clin Microbiol Rev. 2007; 20(3): 440-58, table of contents. [View at Publisher] [DOI] [PMID] [Google Scholar]
46. Rodríguez-Baño J, Gutiérrez-Gutiérrez B, Machuca I, Pascual A. Treatment of Infections Caused by Extended-Spectrum-Beta-Lactamase-, AmpC-, and Carbapenemase-Producing Enterobacteriaceae. Clin Microbiol Rev. 2018; 31(2):e00079-17. [View at Publisher] [DOI] [PMID] [Google Scholar]
47. Gutmann L, Kitzis MD, Yamabe S, Acar JF. Comparative evaluation of a new beta-lactamase inhibitor, YTR 830, combined with different beta-lactam antibiotics against bacteria harboring known beta-lactamases. Antimicrob Agents Chemother. 1986; 29(5): 955-7. [View at Publisher] [DOI] [PMID] [Google Scholar]
48. Codjoe FS, Donkor ES. Carbapenem Resistance: A Review. Med Sci (Basel). 2017; 6(1): 1. [View at Publisher] [DOI] [PMID] [Google Scholar]
49. Peleg AY, Hooper DC. Hospital-acquired infections due to gram-negative bacteria. N Engl J Med. 2010; 362(19): 1804-13. [View at Publisher] [Google Scholar]
50. Malik MA, Wani MY, Hashmi AA. Combination therapy: Current status and future perspectives. Elsevier Inc. 2020; 1-38. [View at Publisher] [DOI] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.