Volume 14, Issue 6 (Nov-Dec 2020)                   mljgoums 2020, 14(6): 10-16 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

zakeri M, Mohebbi A, Askari F S, Yasaghi M. Variations of Histone Acetyltransferase 300 in Patients with Human Papillomavirus Type 6-Associated Anogenital Warts. mljgoums 2020; 14 (6) :10-16
URL: http://mlj.goums.ac.ir/article-1-1326-en.html
1- Department of biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran , taheriforough93@gmail.com@yahoo.com
2- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, IranStem Cell Research Center, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
3- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
4- Department of Biology, Islamic Azad University of Tehran, Medical Branch, Tehran, Iran
Abstract:   (2919 Views)
Background and objectives: Pathogenesis of human papillomaviruses (HPVs) is controlled by viral and host factors, among which human histone acetyltransferase p300 (EP300) plays an important role. This study aimed to examine single nucleotide polymorphisms (SNPs) at the EP300 binding site in patients with HPV-associated anogenital wart.
     Methods: After DNA extraction, polymerase chain reaction was performed to determine HPV genotypes. Human p300 was amplified to detect SNPs using Sanger sequencing.
     Results: Overall, 35.3% of HPV-6-positive patients had Ile997Val substitution at the EP300 binding site. Another SNP containing A to G point mutation leading to Glu983Gly was also detected. In addition, Ile997Val substitution of EP300 was frequently observed in the patients.
     Conclusion: Our findings suggest that the EP300 genotype Ile/Val can be involved in HPV-6 pathogenesis. In addition, we introduced a new genotype (Glu983Gly) at the EP300 bromodomain site, which requires further investigation.
Full-Text [PDF 579 kb]   (685 Downloads)    
Research Article: Original Paper | Subject: Human Genetics
Received: 2020/05/16 | Accepted: 2020/06/13 | Published: 2020/10/29 | ePublished: 2020/10/29

References
1. Unger ER, Ruffin MT, Diaz-Arrastia C. Human papillomaviruses. In: Clinical Gynecology, 2nd Ed, 371-381 (2015). [DOI:10.1017/CBO9781139628938.027]
2. Kofoed K, Sand C, Forslund O, Madsen K. Prevalence of human papillomavirus in anal and oral sites among patients with genital warts. Acta Derm. Venereol. 94(2), 207-211 (2014). [DOI:10.2340/00015555-1718] [PubMed] [Google Scholar]
3. Ripabelli G, Grasso GM, Del Riccio I, Tamburro M, Sammarco ML. Prevalence and genotype identification of human papillomavirus in women undergoing voluntary cervical cancer screening in Molise, Central Italy. Cancer Epidemiol. (2010). [DOI:10.1016/j.canep.2009.12.010] [PubMed] [Google Scholar]
4. Yuanyue L, Baloch Z, Yasmeen N, Tao Y, Xiaomei W, Xueshan X. The distribution of human papillomavirus genotypes in cervical cancer and intraepithelial neoplasia lesions among Chinese women in Yunnan Province. J. Infect. Public Health. 2018; 11(1): 105-110. [DOI:10.1016/j.jiph.2017.06.012] [PubMed] [Google Scholar]
5. Camara HB, Anyanwu M, Wright E, Kimmitt PT. Human papilloma virus genotype distribution and risk factor analysis amongst reproductive-age women in urban Gambia. 2018; J Med Microbiol. 67(11): 1645-1654. [DOI:10.1099/jmm.0.000848] [PubMed] [Google Scholar]
6. Muñoz N, Bosch FX, De Sanjosé S, Herrero R, Castellsagué X, Shah KV, et al. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003; 348(6): 518-27.doi: 10.1056/NEJMoa021641. [DOI:10.1056/NEJMoa021641] [PubMed] [Google Scholar]
7. Lin CY, Chen HC, Lin RW, et al. Quality assurance of genotyping array for detection and typing of human papillomavirus. J Virol Methods. 2007; 140(1-2): 1-9. [DOI:10.1016/j.jviromet.2006.10.004] [PubMed] [Google Scholar]
8. Zuna RE, Allen RA, Moore WE, Lu Y, Mattu R, Dunn ST. Distribution of HPV genotypes in 282 women with cervical lesions: Evidence for three categories of intraepithelial lesions based on morphology and HPV type. Mod. Pathol. 2007; 20(2): 167-174. [DOI:10.1038/modpathol.3800723] [PubMed] [Google Scholar]
9. Piana A, Sotgiu G, Castiglia P, et al. Prevalence and type distribution of human papillomavirus infection in women from North Sardinia, Italy. BMC Public Health. 2011; 11. [DOI:10.1186/1471-2458-11-785] [PubMed] [Google Scholar]
10. Halfon P, Ravet S, Khiri H, Penaranda G, Lefoll C. Incident HPV 51 infection after prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine Gardasil/silgard®. Clin Med Insights Case Reports. 2010; 3, 69-71. [DOI:10.4137/CCRep.S6177] [PubMed] [Google Scholar]
11. Ebrahimi A, Moradi MR, Rezaei M, et al. Comparison of the risk factors and HPV types in males with anogenital warts with and without involvement of the urethral meatus in Western Iran. Acta Dermatovenerologica Alpina, Pannonica Adriat. 2017; 26(3), 55-58. [DOI:10.15570/actaapa.2017.18] [PubMed] [Google Scholar]
12. Ozaydin-Yavuz G, Bilgili SG, Guducuoglu H, Yavuz IH, Elibuyuk-Aksac S, Karadag AS. Determinants of high-risk human papillomavirus infection in anogenital warts. Postep. Dermatologii i Alergol. 2019; 36(1): 76-81. [DOI:10.5114/ada.2019.82915] [PubMed] [Google Scholar]
13. Jamshidi M, Shekari M, Nejatizadeh AA, et al. The impact of human papillomavirus (HPV) types 6, 11 in women with genital warts. Arch Gynecol Obstet. 2012; 286(5): 1261-1267. [DOI:10.1007/s00404-012-2416-1] [PubMed] [Google Scholar]
14. Sammarco ML, Tamburro M, Pulliero A, Izzotti A, Ripabelli G. Human Papillomavirus Infections, Cervical Cancer and MicroRNAs: An Overview and Implications for Public Health. MicroRNA. 2019. [DOI:10.2174/2211536608666191026115045] [PubMed] [Google Scholar]
15. Gupta SM, Mania-Pramanik J. Molecular mechanisms in progression of HPV-associated cervical carcinogenesis. J Biomed Sci. 2019. [DOI:10.1186/s12929-019-0545-6] [PubMed] [Google Scholar]
16. Eckner R, Arany Z, Ewen M, Sellers W, Livingston DM. The adenovirus E1A-associated 300-kD protein exhibits properties of a transcriptional coactivator and belongs to an evolutionarily conserved family. In: Cold Spring Harbor Symposia on Quantitative Biology. 1994; 85-95. [DOI:10.1101/SQB.1994.059.01.012] [Google Scholar]
17. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Dev. 2000; 14(13): 1553-1577. [PubMed] [Google Scholar]
18. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996; 87(5): 953-959. [DOI:10.1016/S0092-8674(00)82001-2] [PubMed] [Google Scholar]
19. Gayther SA, Batley SJ, Linger L, et al. Mutations truncating the EP300 acetylase in human cancers. Nat Genet. 2000; 24(3): 300-303. [DOI:10.1038/73536] [PubMed] [Google Scholar]
20. Bryan EJ, Jokubaitis VJ, Chamberlain NL, et al. Mutation analysis of EP300 in colon, breast and ovarian carcinomas. Int J Cancer. 2002; 102(2): 137-141. [DOI:10.1002/ijc.10682] [PubMed] [Google Scholar]
21. Koshiishi N, Chong JM, Fukasawa T, et al. P300 Gene Alterations in Intestinal and Diffuse Types of Gastric Carcinoma. Gastric Cancer. 2004; 7(2): 85-90. [DOI:10.1007/s10120-004-0273-8] [PubMed] [Google Scholar]
22. Akil A, Ezzikouri S, El Feydi AE, et al. Associations of genetic variants in the transcriptional coactivators EP300 and PCAF with hepatocellular carcinoma. Cancer Epidemiol. 2012; 36(5). [DOI:10.1016/j.canep.2012.05.011] [PubMed] [Google Scholar]
23. Dornan D, Shimizu H, Perkins ND, Hupp TR. DNA-dependent acetylation of p53 by the transcription coactivator p300. J Biol Chem. 2003; 278(15): 13431-13441. [DOI:10.1074/jbc.M211460200] [PubMed] [Google Scholar]
24. Grossman SR. p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem. 2001; 268(10): 2773-2778. [DOI:10.1046/j.1432-1327.2001.02226.x] [PubMed] [Google Scholar]
25. Weaver BK, Kumar KP, Reich NC. Interferon Regulatory Factor 3 and CREB-Binding Protein/p300 Are Subunits of Double-Stranded RNA-Activated Transcription Factor DRAF1. Mol Cell Biol. 1998; 18(3): 1359-1368. [DOI:10.1128/MCB.18.3.1359] [PubMed] [Google Scholar]
26. Liu X, Wang L, Zhao K, et al. The structural basis of protein acetylation by the p300/CBP transcriptional coactivator. Nature. 2008; 451(7180): 846-850. [DOI:10.1038/nature06546] [PubMed] [Google Scholar]
27. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Trends Genet. 1996; 12(10): 399. [DOI:10.1016/0168-9525(96)81487-9] [PubMed] [Google Scholar]
28. Mietz JA, Unger T, Huibregtse JM, Howley PM. The transcriptional transactivation function of wild-type p53 is inhibited by SV40 large T-antigen and by HPV-16 E6 oncoprotein. EMBO J. 1992; 11(13): 5013-5020. [DOI:10.1002/j.1460-2075.1992.tb05608.x] [PubMed] [Google Scholar]
29. Comparetto C, Borruto F. Human papillomavirus infection: Overview. In: Handbook on Human Papillomavirus: Prevalence, Detection and Management (2013). [Google Scholar]
30. Lytwyn A, Sellors JW. Sexually transmitted human papillomaviruses: Current concepts and control issues. Can J Hum Sex. 1997; 6(2): 113-126. [Google Scholar]
31. Ucciferri C, Tamburro M, Falasca K, Sammarco ML, Ripabelli G, Vecchiet J. Prevalence of anal, oral, penile and urethral human papillomavirus in HIV infected and HIV uninfected men who have sex with men. J Med Virol. 2018. [DOI:10.1002/jmv.24943] [PubMed] [Google Scholar]
32. Franco EL. Persistent HPV infection and cervical cancer risk: Is the scientific rationale for changing the screening paradigm enough? J Natl Cancer Inst. 2010; 102(19): 1451-1453. [DOI:10.1093/jnci/djq357] [PubMed] [Google Scholar]
33. Hawkins MG, Winder DM, Ball SLR, et al. Detection of specific HPV subtypes responsible for the pathogenesis of condylomata acuminata. Virol J. 2013. [DOI:10.1186/1743-422X-10-137] [PubMed] [Google Scholar]
34. Gissmann L, De Villiers E ‐M, Hausen H Zur. Analysis of human genital warts (condylomata acuminata) and other genital tumors for human papillomavirus type 6 DNA. Int J Cancer. 1982; 29(2): 143-146. [DOI:10.1002/ijc.2910290205] [PubMed] [Google Scholar]
35. Galloway DA, Laimins LA. Human papillomaviruses: Shared and distinct pathways for pathogenesis. Curr Opin Virol. 2015. [DOI:10.1016/j.coviro.2015.09.001] [PubMed] [Google Scholar]
36. Ohshima T, Suganuma T, Ikeda M aki. A novel mutation lacking the bromodomain of the transcriptional coactivator p300 in the SiHa cervical carcinoma cell line. Biochem Biophys Res Commun. 2001; 281(2): 569-575. [DOI:10.1006/bbrc.2001.4389] [PubMed] [Google Scholar]
37. Patel D, Huang SM, Baglia LA, McCance DJ. The E6 protein of human papillomavirus type 16 binds to and inhibits co-activation by CBP and p300. EMBO J. 1999; 18(18): 5061-5072. [DOI:10.1093/emboj/18.18.5061] [PubMed] [Google Scholar]
38. Baldwin A, Huh K-W, Munger K. Human Papillomavirus E7 Oncoprotein Dysregulates Steroid Receptor Coactivator 1 Localization and Function. J Virol. 2006; 80(13): 6669-6677. [DOI:10.1128/JVI.02497-05] [PubMed] [Google Scholar]
39. Hebner C, Beglin M, Laimins LA. Human Papillomavirus E6 Proteins Mediate Resistance to Interferon-Induced Growth Arrest through Inhibition of p53 Acetylation. J Virol. 2007; 81(23): 12740-12747. [DOI:10.1128/JVI.00987-07] [PubMed] [Google Scholar]
40. James MA, Lee JH, Klingelhutz AJ. HPV16-E6 associated hTERT promoter acetylation is E6AP dependent, increased in later passage cells and enhanced by loss of p300. Int J Cancer. 2006; 119(8): 1878-1885. [DOI:10.1002/ijc.22064] [PubMed] [Google Scholar]
41. Bernat A, Massimi P, Banks L. Complementation of a p300/CBP defective-binding mutant of adenovirus E1a by human papillomavirus E6 proteins. J Gen Virol. 2002; 83(4): 829-833. [DOI:10.1099/0022-1317-83-4-829] [PubMed] [Google Scholar]
42. Syrjänen S, Naud P, Sarian L, et al. P300 Expression Is Related To High-Risk Human Papillomavirus Infections and Severity of Cervical Intraepithelial Neoplasia But Not To Viral or Disease Outcomes in a Longitudinal Setting. Int J Gynecol. Pathol. 2010; 29(2): 135-145. [DOI:10.1097/PGP.0b013e3181bccaec] [PubMed] [Google Scholar]
43. Bernat A, Avvakumov N, Mymryk JS, Banks L. Interaction between the HPV E7 oncoprotein and the transcriptional coactivator p300. Oncogene. 2003; 22(39): 7871-7881. [DOI:10.1038/sj.onc.1206896] [PubMed] [Google Scholar]
44. Muller A, Ritzkowsky A, Steger G. Cooperative Activation of Human Papillomavirus Type 8 Gene Expression by the E2 Protein and the Cellular Coactivator p300. J Virol. 2002; 76(21): 11042-11053. [DOI:10.1128/JVI.76.21.11042-11053.2002] [PubMed] [Google Scholar]
45. Muller-Schiffmann A, Beckmann J, Steger G. The E6 Protein of the Cutaneous Human Papillomavirus Type 8 Can Stimulate the Viral Early and Late Promoters by Distinct Mechanisms. J Virol. 2006; 80(17): 8718-8728. [DOI:10.1128/JVI.00250-06] [PubMed] [Google Scholar]
46. Krüppel U, Müller-Schiffmann A, Baldus SE, Smola-Hess S, Steger G. E2 and the co-activator p300 can cooperate in activation of the human papillomavirus type 16 early promoter. Virology. 2008; 377(1): 151-159. [DOI:10.1016/j.virol.2008.04.006] [PubMed] [Google Scholar]
47. Fontaine V, Van Meijden E Der, Schegget J Ter. Inhibition of human papillomavirus-16 long control region activity by interferon-gamma overcome by p300 overexpression. Mol. Carcinog. 2001; 31(1): 27-36. [DOI:10.1002/mc.1036] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.