Volume 17, Issue 3 (May-Jun 2023)                   mljgoums 2023, 17(3): 45-54 | Back to browse issues page


XML Print


1- Department of Plant sciences, School of Biology, Damghan University, Damghan, Iran
2- Department of Plant sciences, School of Biology, Damghan University, Damghan, Iran , poozesh@du.ac.ir
3- Department of Molecular & Cellular, School of Biology, Damghan University, Damghan, Iran
Abstract:   (1290 Views)
Background and objectives: Foodborne pathogens can significantly affect the public health and cause medical, social, and economic burden. Listeria monocytogenes, Salmonella ­enterica, and Yersinia enterocolitica are important foodborne pathogens that can cause various diseases. Plant-derived compounds are promising bioactive substances with inhibitory effects against bacteria. Perovskia abrotanoides Kar. is a medical plant with broad therapeutic activities. In the present study, we aimed to investigate the inhibitory effects of P. abrotanoides extracts against some foodborne pathogens.
Methods: Flowering branches of P. abrotanoides were collected in 2018 and 2019 from three different habitats in the eastern Alborz Mountains, Iran. The antimicrobial activity of the extracts was evaluated using the agar well diffusion test. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the extracts were determined against L. monocytogenes, S. ­enterica, and Y. enterocolitica. In addition, the antioxidant activity of the extracts was investigated by the DPPH test.
Results: The lowest MIC (200 µg/ml) and MBC (400 µg/ml) values against Y. enterocolitica were related to the ethyl acetate extract of plants collected from habitat 1 in 2019. The lowest MIC (50 µg/ml) and MBC (400 µg/ml) values against L.­­ monocytogenes were related to the dichloromethane extract of plants collected from habitat 1 in 2019. All extracts showed antioxidant properties. Results of one-way ANOVA indicated that the DPPH scavenging activity of extracts from plants collected in 2019 was greater than that of those collected in 2018. In most cases, the methanol and ethyl acetate extracts showed more radical scavenging potential.
Conclusion: It seems that P. abrotanoides is a rich source of antimicrobial and antioxidant compounds with great potential for use in the pharmaceutical and food industries.
Full-Text [PDF 737 kb]   (384 Downloads) |   |   Full-Text (HTML)  (477 Views)  
Research Article: Research Article | Subject: Microbiology
Received: 2021/02/12 | Accepted: 2021/06/21 | Published: 2023/05/21 | ePublished: 2023/05/21

References
1. Dixon RE. Control of Health-Care--Associated Infections, 1961--2011. Supplements. 2011; 60(04): 58-63. [View at Publisher] [Google Scholar]
2. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M, Roy SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17(1):7-15. [View at Publisher] [PubMed] [Google Scholar]
3. Al-Tayyar NA, Youssef AM, Al-Hindi R. Antimicrobial food packaging based on sustainable Bio-based materials for reducing foodborne Pathogens: A review. Food Chem. 2020; 310: 125915. [View at Publisher] [DOI:10.1016/j.foodchem.2019.125915] [PubMed] [Google Scholar]
4. Jara J, Pérez-Ramos A, Del Solar G, Rodríguez JM, Fernández L, Orgaz B. Role of Lactobacillus biofilms in Listeria monocytogenes adhesion to glass surfaces. Int J Food Microbiol. 2020;334:108804. [View at Publisher] [DOI:10.1016/j.ijfoodmicro.2020.108804] [PubMed] [Google Scholar]
5. Mutz YdS, Rosario DKA, Paschoalin VMF, Conte-Junior CA. Salmonella enterica: A hidden risk for dry-cured meat consumption? Crit Rev Food Sci Nutr. 2020; 60(6): 976-90. [View at Publisher] [DOI:10.1080/10408398.2018.1555132] [PubMed] [Google Scholar]
6. Guillier L, Fravalo P, Leclercq A, Thébaut A, Kooh P, Cadavez V, et al. Risk factors for sporadic Yersinia enterocolitica infections: a systematic review and meta-analysis. Microbial Risk Analysis. 2020:100141. [View at Publisher] [DOI:10.1016/j.mran.2020.100141] [Google Scholar]
7. Ghaderi S, Ebrahimi SN, Ahadi H, Moghadam SE, Mirjalili MH. In vitro propagation and phytochemical assessment of Perovskia abrotanoides Karel.(Lamiaceae)-A medicinally important source of phenolic compounds. Biocatalysis and agricultural biotechnology. 2019;19:101113. [View at Publisher] [DOI:10.1016/j.bcab.2019.101113] [Google Scholar]
8. Tabefam M, Farimani MM, Danton O, Ramseyer J, Kaiser M, Ebrahimi SN, et al. Antiprotozoal diterpenes from Perovskia abrotanoides. Planta medica. 2018;84(12/13):913-9. [View at Publisher] [DOI:10.1055/a-0608-4946] [PubMed] [Google Scholar]
9. Jaafari MR, Hooshmand S, Samiei A, Hossainzadeh H. Evaluation of-leishmanicidal effect of Perovskia abrotanoides Karel. root extract by in vitro leishmanicidal assay using promastigotes of Leishmania major. Pharmacologyonline. 2007;1: 299-303. [View at Publisher] [Google Scholar]
10. Frankel JA. No single currency regime is right for all countries or at all times. National Bureau of Economic Research; 1999. [View at Publisher] [DOI:10.3386/w7338]
11. Prabhasankar P, Ganesan P, Bhaskar N, Hirose A, Stephen N, Gowda LR, et al. Edible Japanese seaweed, wakame (Undaria pinnatifida) as an ingredient in pasta: Chemical, functional and structural evaluation. Food Chem. 2009; 115(2): 501-8. [View at Publisher] [DOI:10.1016/j.foodchem.2008.12.047] [Google Scholar]
12. Ćujić N, Šavikin K, Janković T, Pljevljakušić D, Zdunić G, Ibrić S. Optimization of polyphenols extraction from dried chokeberry using maceration as traditional technique. Food Chem. 2016;194:135-42. [View at Publisher] [DOI:10.1016/j.foodchem.2015.08.008] [PubMed] [Google Scholar]
13. Issa AY, Volate SR, Wargovich MJ. The role of phytochemicals in inhibition of cancer and inflammation: New directions and perspectives. Journal of Food Composition and Analysis. 2006;19(5):405-19. [View at Publisher] [DOI:10.1016/j.jfca.2006.02.009] [Google Scholar]
14. Ackerknecht EH. Therapeutics from the Primitives to the 20th Century (with an Appendix: History of Dietetics): Hafner Press, A Division of MacMillan Publishing Co., New York, and Collier MacMillan Publishers, London. 1973; 194. [View at Publisher] [DOI]
15. Hozoorbakhsh F, Esfahani BN, Moghim S, Asghari G. Evaluation of the effect of Pulicaria gnaphalodes and Perovskia abrotanoides essential oil extracts against mycobacterium tuberculosis strains. Advanced Biomedical Research. 2016;5. [View at Publisher] [DOI:10.4103/2277-9175.180991] [PubMed] [Google Scholar]
16. Sadeghi Z, Alizadeh Z, Khorrami F, Norouzi S, Moridi Farimani M. Insecticidal activity of the essential oil of Perovskia artemisioides Boiss. Nat Prod Res. 2020:1-5. [View at Publisher] [DOI:10.1080/14786419.2020.1803311] [PubMed] [Google Scholar]
17. Mahboubi M, Kazempour N. The antimicrobial activity of essential oil from Perovskia abrotanoides karel and its main components. Indian journal of pharmaceutical sciences. 2009;71(3):343. [View at Publisher] [DOI:10.4103/0250-474X.56016] [PubMed] [Google Scholar]
18. Derakhshanfar A, Mehrabani D, Moayedi J, Jamhiri I. Healing Effect of Perovskia Abrotanoides Karel and Expression of VEGF and TGF-Β Genes in Burn Injury of Rats. International Journal of Nutrition Sciences. 2019; 4(4): 175-180. [View at Publisher] [Google Scholar]
19. Fereidouni A, Sabbaghian E, Ghanbari A, Khaleghian A. Effect of Hydroalcoholic Extract of Perovskia abrotanoides on Glucose, Cholesterol and HDL Levels in Diabetic Rats. Journal of Mazandaran University of Medical Sciences. 2019; 29(175): 138-44. [View at Publisher] [Google Scholar]
20. Sairafianpour M, Christensen J, Stærk D, Budnik BA, Kharazmi A, Bagherzadeh K, et al. Leishmanicidal, antiplasmodial, and cytotoxic activity of novel diterpenoid 1, 2-quinones from Perovskia abrotanoides: new source of tanshinones. J Nat Prod. 2001; 64(11): 1398-403. [View at Publisher] [DOI:10.1021/np010032f] [PubMed] [Google Scholar]
21. Jiang Z-Y, Huang C-G, Xiong H-B, Tian K, Liu W-X, Hu Q-F, et al. Perovskatone A: a novel C23 terpenoid from Perovskia atriplicifolia. Tetrahedron Lett. 2013;54(29):3886-8. [View at Publisher] [DOI:10.1016/j.tetlet.2013.05.056] [Google Scholar]
22. Iqbal J, Abbasi BA, Mahmood T, Kanwal S, Ahmad R, Ashraf M. Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. J Mol Struct. 2019;1189:315-27. [View at Publisher] [DOI:10.1016/j.molstruc.2019.04.060] [Google Scholar]
23. Jorgensen JH, Turnidge JD. Susceptibility test methods: dilution and disk diffusion methods. Manual of Clinical Microbiology, Eleventh Edition: American Society of Microbiology. 2015; 1253-73. [View at Publisher] [DOI:10.1128/9781555817381.ch71.] [Google Scholar]
24. CLSI C. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard. 2012.
25. Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. CLSI (NCCLS). 2006;26:M7-A. [View at Publisher] [DOI:10.1016/S0378-8741(01)00413-5] [PubMed] [Google Scholar]
26. Braca A, Sortino C, Politi M, Morelli I, Mendez J. Antioxidant activity of flavonoids from Licania licaniaeflora. J Ethnopharmacol. 2002;79(3):379-81. [View at Publisher] [DOI:10.1016/S0378-8741(01)00413-5] [PubMed] [Google Scholar]
27. Arumugam M, Mitra A, Jaisankar P, Dasgupta S, Sen T, Gachhui R, et al. Isolation of an unusual metabolite 2-allyloxyphenol from a marine actinobacterium, its biological activities and applications. Appl Microbiol Biotechnol. 2010; 86(1): 109-17. [View at Publisher] [DOI:10.1007/s00253-009-2311-2] [PubMed] [Google Scholar]
28. Wei X, Zhao X. Advances in typing and identification of foodborne pathogens. Current Opinion in Food Science. 2021; 37: 52-57. [View at Publisher] [DOI:10.1016/j.cofs.2020.09.002] [Google Scholar]
29. Mohammadhosseini M, Venditti A, Akbarzadeh A. The genus Perovskia Kar.: ethnobotany, chemotaxonomy and phytochemistry: a review. Toxin Rev. 2019:1-22. [View at Publisher] [DOI:10.1080/15569543.2019.1691013] [Google Scholar]
30. Safaeighomi J, Batooli H. Determination of bioac tive molecules from flowers, leaves, stems and roots of Perovskia abrotanoides Karel growing in central Iran by nano scale injection. Digest Journal of Nanomaterials and Biostructures. 2010;5:551-6. [View at Publisher] [Google Scholar]
31. Abedini A, Roumy V, Mahieux S, Gohari A, Farimani M, Rivière C, et al. Antimicrobial activity of selected Iranian medicinal plants against a broad spectrum of pathogenic and drug multiresistant micro‐organisms. Lett Appl Microbiol. 2014; 59(4): 412-21. [View at Publisher] [DOI:10.1111/lam.12294] [PubMed] [Google Scholar]
32. Ghafourian M, Mazandarani M. Ethnopharmacology, ecological requirements, antioxidant and antimicrobial activities of Perovskia abrotanoides Karel. extract for vaginal infections from semnan province. International journal of women's health and reproduction sciences. 2016;5(4):295-300 [View at Publisher] [DOI:10.15296/ijwhr.2017.50] [Google Scholar]
33. Denis F, Cattoir V, Martin C, Ploy M-C, Poyart C. Bactériologie médicale: techniques usuelles: Elsevier Masson; 2016. [View at Publisher] [Google Scholar]
34. Aoyagi Y, Takahashi Y, Satake Y, Takeya K, Aiyama R, Matsuzaki T, et al. Cytotoxicity of abietane diterpenoids from Perovskia abrotanoides and of their semisynthetic analogues. Bioorganic & medicinal chemistry. 2006;14(15):5285-91. [View at Publisher] [DOI:10.1016/j.bmc.2006.03.047] [PubMed] [Google Scholar]
35. Harper JL. Population biology of plants. Population biology of plants. 1977. [View at Publisher] [Google Scholar]
36. Pourhosseini SH, Hadian J, Sonboli A, Nejad Ebrahimi S, Mirjalili MH. Genetic and Chemical Diversity in Perovskia abrotanoides Kar.(Lamiaceae) Populations Based on ISSR s Markers and Essential Oils Profile. Chem Biodivers. 2018; 15(3): e1700508. [View at Publisher] [DOI:10.1002/cbdv.201700508] [PubMed] [Google Scholar]
37. Hayashi H, Sudo H. Economic importance of licorice. Plant Biotechnol. 2009;26(1):101-4. [View at Publisher] [DOI:10.5511/plantbiotechnology.26.101.] [Google Scholar]
38. Gende L, Maggi M, Van Baren C, Lira ADL, Bandoni A, Fritz R, et al. Antimicrobial and miticide activities of Eucalyptus globulus essential oils obtained from different Argentine regions. Spanish Journal of Agricultural Research. 2010; 3: 642-50. [View at Publisher] [DOI:10.5424/sjar/2010083-1260] [Google Scholar]
39. Ashraf M, Ali Q. Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola (Brassica napus L.). Environ Exp Bot. 2008; 63(1-3): 266-73. [View at Publisher] [DOI:10.1016/j.envexpbot.2007.11.008] [Google Scholar]
40. Karimi S, Arzani A, Saeidi G. Effect of salinity stress on antioxidant enzymes and chlorophyll content of salt-tolerant and salt-sensitive safflower (Carthamus tinctorius L.) genotypes. Journal of Plant Process and Function. 2015;4(13):25-35. [View at Publisher] [Google Scholar]
41. Koca H, Bor M, Özdemir F, Türkan İ. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars. Environ Exp Bot. 2007;60(3):344-51. [View at Publisher] [DOI:10.1016/j.envexpbot.2006.12.005.] [Google Scholar]
42. Yildiz M, Terzi H. Effect of NaCl stress on chlorophyll biosynthesis, proline, lipid peroxidation and antioxidative enzymes in leaves of salt-tolerant and salt-sensitive barley cultivars. Journal of Agricultural Sciences. 2013; 19(2): 79-88. [View at Publisher] [DOI:10.1501/Tarimbil_0000001232] [Google Scholar]
43. Farzaneh M, Amirahmadi A, Poozesh V, Salimi F. Study on Phytochemical diversity and antioxidant properties of extracts from different populations of Perovskia abrotanoides Kar. in Eastern Alborz. Eco-phytochemical Journal of Medicinal Plants. 2021; 9(3): 16-28. [View at Publisher] [Google Scholar]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.