Volume 10, Issue 6 (Nov-Dec-2016 2016)                   mljgoums 2016, 10(6): 28-31 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ahani Azari A, Zahraei Salehi T, Nayeri Fasaei B. In vitro Susceptibility Study of Salmonella typhimurium Mutant to Stress Factors. mljgoums. 2016; 10 (6) :28-31
URL: http://mlj.goums.ac.ir/article-1-919-en.html
1- Department of Microbiology, Gorgan Branch , ania_783@yahoo.com
2- Department of Microbiology, Faculty of Veterinary Medicine
Abstract:   (7161 Views)

ABSTRACT

        Background and Objective: In this study, we compared the susceptibility of Salmonella typhimurium phoP mutant and its parent to stress conditions that the pathogen may encounter in a host.

        Methods: For this purpose, we used the phoP deletion mutant constructed in our previous study. In order to test the in vitro susceptibility of the mutant to stress factors, the effect of acidic pH, heat, bile salts and polymyxin on growth of the mutant was examined. Then, minimum inhibitory concentration and minimum bactericidal concentration of bile salts and polymyxin were determined. Salmonella typhimurium 14028 was used as the parent strain.

         Results: The mutant was highly susceptible to bile salts and polymyxin in comparison with the parent strain, but no difference was observed in their susceptibility to acid and heat.

          Conclusion: This study confirms the role of the phoP in resistance of Salmonella to polymyxin and bile salts. Mutation in the phoP leads to susceptibility of the mutant to bile and cationic antimicrobial peptides.

         Keywords: In vitro, Mutant, Salmonella typhimurium, Disease Susceptibility.

Full-Text [PDF 497 kb]   (775 Downloads)    
Type of Study: Original Paper |
Received: 2017/01/25 | Accepted: 2017/01/25 | Published: 2017/01/25 | ePublished: 2017/01/25

References
1. Janssen R, van der Straaten T, van Diepen A, van Dissel JT. Responses to reactive oxygen intermediates and virulence of Salmonella typhimurium. Microbes Infect. 2003; 5(6): 527-34. doi: 10.1016/j.fm.2009.07.015. [DOI:10.1016/j.fm.2009.07.015]
2. Álvarez-Ordó-ez A, Fernández A, Bernardo A, López M. Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food Microbiol. 2010; 27(1): 44-49. doi: 10.1016/j.fm.2009.07.015. [DOI:10.1016/j.fm.2009.07.015]
3. Cano D, Martı́nez-Moya M, Graciela Pucciarelli M, Groisman E, Casadesús1 J and Garcı́a-Del Portillo F. Salmonella enterica Serovar Typhimurium Response Involved in Attenuation of Pathogen Intracellular Proliferation. Infect Immun. 2001; 69 (10): 6463-6474. [DOI:10.1128/IAI.69.10.6463-6474.2001]
4. Gahan C,Hill C. The relationship between acid stress responses and virulence in Salmonella typhimurium and Listeria monocytogenes. Int J Food Microbiol. 1999; 50(1-2): 93-100. [DOI:10.1016/S0168-1605(99)00079-3]
5. Utsumi R. Bacterial Signal Transduction: Networks and Drug Targets. Series of Advances in Experimental Medicine and Biology. Landes Bioscience and Springer Science+Business Media, LLC, 233 Spring Street, New York, New York 10013, USA. Volume 631. 2008: 7-21.
6. Rychlik I, Barrow P. Salmonella stress management and its relevance to behavior during intestinal colonization and infection. FEMS Microbiol Rev. 2005; 29(5): 1021-1041. DOI:10.1016/j.femsre.2005.03.005. [DOI:10.1016/j.femsre.2005.03.005]
7. Navarre W, Halsey T, Walthers D, Frye J, McClelland M, Potter J, et al. Co-regulation of Salmonella enterica genes required for virulence and resistance to antimicrobial peptides by SlyA and PhoP/PhoQ. Mol Microbiol. 2005; 56(2):492-508. [DOI:10.1111/j.1365-2958.2005.04553.x]
8. Prouty AM, Brodsky IE, Falkow S, Gunn JS. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiol. 2004; 150(Pt 4): 775-83. [DOI:10.1099/mic.0.26769-0]
9. Ahani Azari A, Zahraei Salehi T, Nayeri Fasaei B. Gene disruption in Salmonella typhimurim by modified λ Red disruption system. IJVR. 2015; 16(3): 301-305.
10. Karasova D, Sebkova A, Vrbas V, Havlickova H, Sisak F, Rychlik I. Comparative analysis of Salmonella enterica serovar Enteritidis mutants with a vaccine potential. Vaccine. 2009; 27(38): 5265-5270. [DOI:10.1016/j.vaccine.2009.06.060]
11. Rhen M, Dorman CJ. Hierarchical gene regulators adapt Salmonella enterica to its host milieus. Int J Med Microbiol. 2005; 294(8):487-502. [DOI:10.1016/j.ijmm.2004.11.004]
12. Shi Y, Cromie MJ, Hsu FF, Turk J, Groisman EA. PhoP-regulated Salmonella resistance to the antimicrobial peptides magainin 2 and polymyxin B. Mol Microbiol. 2004; 53(1): 229-41. [DOI:10.1111/j.1365-2958.2004.04107.x]
13. Kokosharov T. Acid tolerance, bile salts and serum resistance of Salmonella Gallinarum from hens. VET ARHIV. 2003; 73(5): 277-283.
14. Velkinburgh J, Gunn J. PhoP-PhoQ-Regulated Loci Are Required for Enhanced Bile Resistance in Salmonella spp. Infect Immun. 1999; 67(4): 1614-1622.
15. Gunn JS. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2000; 2(8): 907-13. [DOI:10.1016/S1286-4579(00)00392-0]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal