Volume 10, Issue 6 (Nov-Dec-2016 2016)                   mljgoums 2016, 10(6): 14-20 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi kahrizsangi A, Habibian Dehkordi S, Shabanpur Z, Hakimi Alni R, Hemati M. Effect of Benzalkonium Chloride on Biofilm of Bacteria Causing Nosocomial Infectionstions. mljgoums 2016; 10 (6) :14-20
URL: http://mlj.goums.ac.ir/article-1-913-en.html
1- Department of Pathobiology, Faculty of Veterinary Medicine
2- Department of Basic Sciences, Faculty of Veterinary Medicine
3- Department of Bacteriology, Faculty of Veterinary Medicine
4- Department of Bacteriology, Faculty of Paraveterinary , r.hakimi91@basu.ac.ir
Abstract:   (14578 Views)

ABSTRACT

         Background and Objective: Biofilms are community of bacteria that attach to inanimate surfaces or living tissues via production of extracellular polymers and exopolysaccharide matrix. Microbial biofilms on various surfaces of the hospital environment are considered as a reservoir of infection spread. The present study aimed to evaluate the disinfecting effect of benzalkonium chloride on some bacterial isolates causing nosocomial infections.

       Methods: First, 13 isolates from four bacteria including Pseudomonas aeruginosa, Staphylococcus aureus, Acinetobacter and Enterobacter were obtained from Microbiology Laboratory of Al-Zahra Hospital in Isfahan, Iran. The samples were transferred to Microbiology Laboratory of Faculty of Veterinary Medicine of Shahrekord University for testing. Evaluation of biofilm formation and determination of minimum inhibitory concentration (MIC) of the disinfectant and effect of the disinfectant on planktonic growth and biofilm formation were performed.

        Results: All bacterial isolates (52 cases) produced biofilm. Mean MIC of benzalkonium chloride for P. aeruginosa, S. aureus, Enterobacter and Acinetobacter was 0.14, 0.2, 0.18, 0.17 g/ml, respectively. Planktonic growth of all four bacteria was inhibited at concentrations of 2MIC, MIC and 1/2MIC. Biofilm was not produced in MIC and 2MIC concentrations, and biofilm formation capability increased by reducing the concentration of benzalkonium chloride.

          Conclusion: The results show that the use of appropriate concentration of benzalkonium chloride can prevent the growth of different bacterial species, but sub-MIC dose of this disinfectant may stimulate biofilm formation.

            Keywords: Biofilm, Benzalkonium Chloride, Pseudomonas Aeruginosa, Staphylococcus Aureus, Enterobacter, Acinetobacter.

Full-Text [PDF 330 kb]   (1875 Downloads)    
Research Article: Original Paper |
Received: 2016/01/25 | Accepted: 2016/01/25 | Published: 2016/09/25 | ePublished: 2016/09/25

References
1. Barrios AFG, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of bacteriology. 2006; 188(1): 305-16. [DOI:10.1128/JB.188.1.305-316.2006]
2. Schaberg DR, Culver DH, Gaynes RP. Major trends in the microbial etiology of nosocomial infection. The American journal of medicine. 1991;91(3B):S72-S5. [DOI:10.1016/0002-9343(91)90346-Y]
3. Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiological reviews. 1996; 60(3): 539-74.
4. Yarwood JM, Bartels DJ, Volper EM, Greenberg EP. Quorum sensing in Staphylococcus aureus biofilms. Journal of bacteriology. 2004;186(6):1838-50. doi: 10.1128/JB.186.6.1838-1850.2004. [DOI:10.1128/JB.186.6.1838-1850.2004]
5. Graf P. Benzalkonium chloride as a preservative in nasal solutions: re-examining the data. Respiratory medicine. 2001; 95(9): 728-33. [DOI:10.1053/rmed.2001.1127]
6. Marple B, Roland P, Benninger M. Safety review of benzalkonium chloride used as a preservative in intranasal solutions: an overview of conflicting data and opinions. Otolaryngology-Head and Neck Surgery. 2004; 130(1): 131-41. [DOI:10.1016/j.otohns.2003.07.005]
7. Dyer DL, Gerenratch KB, Wadhams PS. Testing a new alcohol-free hand sanitizer to combat infection. AORN journal. 1998; 68(2): 239-51. [DOI:10.1016/S0001-2092(06)62517-9]
8. Carter GR, Cole Jr JR. Diagnostic procedure in veterinary bacteriology and mycology: Academic Press; 2012.
9. Tendolkar PM, Baghdayan AS, Gilmore MS, Shankar N. Enterococcal Surface Protein, Esp, Enhances Biofilm Formation by Enterococcus faecalis. Infection and Immunity. 2004; 72(10): 6032-9. [DOI:10.1128/IAI.72.10.6032-6039.2004]
10. Lewis K. Riddle of Biofilm Resistance. Antimicrobial Agents and Chemotherapy. 2001; 45(4): 999-1007. [DOI:10.1128/AAC.45.4.999-1007.2001]
11. Delissalde F, Amábile-Cuevas CF. Comparison of antibiotic susceptibility and plasmid content, between biofilm producing and non-producing clinical isolates of Pseudomonas aeruginosa. International Journal of Antimicrobial Agents. 2004; 24(4): 405-8. [DOI:10.1016/j.ijantimicag.2004.03.012]
12. Jett BD, Huycke MM, Gilmore MS. Virulence of enterococci. Clinical Microbiology Reviews. 1994; 7(4): 462-78. [DOI:10.1128/CMR.7.4.462]
13. Costerton JW, Lappin-Scott H, Costerton JW, Lappin-Scott. H. Introduction to Microbial Biofilms Microbial Biofilms: Cambridge University Press; 1995.
14. Meyer B. Approaches to prevention, removal and killing of biofilms. International Biodeterioration & Biodegradation. 2003; 51(4): 249-53. [DOI:10.1016/S0964-8305(03)00047-7]
15. Rodríguez-Martínez JM, Pascual A. Antimicrobial resistance in bacterial biofilms. Reviews in Medical Microbiology. 2006; 17(3): 65-75. [DOI:10.1097/01.revmedmi.0000259645.20603.63]
16. Schillaci D. Staphylococcal biofilms: challenges in the discovery of novel antiinfective agents. J Microbial Biochem Technol 3. 2011; iv-vi. doi: 10.4172/1948-5948.100000e4. [DOI:10.4172/1948-5948.100000e4]
17. Sekiguchi J, Hama T, Fujino T, Araake M, Irie A, Saruta K, et al. Detection of the antiseptic- and disinfectant-resistance genes qacA, qacB, and qacC in methicillin-resistant Staphylococcus aureus isolated in a Tokyo hospital. Japanese journal of infectious diseases. 2004; 57(6): 288-91.
18. Houari A, Di Martino P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Letters in applied microbiology. 2007; 45(6): 652-6. [DOI:10.1111/j.1472-765X.2007.02249.x]
19. Hegstad K, Langsrud S, Lunestad BT, Scheie AA, Sunde M, Yazdankhah SP. Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health? Microbial Drug Resistance. 2010; 16(2): 91-104. [DOI:10.1089/mdr.2009.0120]
20. Machado I, Graça J, Sousa AM, Lopes SP, Pereira MO. Effect of antimicrobial residues on early adhesion and biofilm formation by wild-type and benzalkonium chloride-adapted Pseudomonas aeruginosa. Biofouling. 2011; 27(10): 1151-9. [DOI:10.1080/08927014.2011.636148]
21. Vu B, Chen M, Crawford RJ, Ivanova EP. Bacterial extracellular polysaccharides involved in biofilm formation. Molecules. 2009; 14(7): 2535-54. [DOI:10.3390/molecules14072535]
22. Takeo Y, Oie S, Kamiya A, Konishi H, Nakazawa T. Efficacy of disinfectants against biofilm cells of Pseudomonas aeruginosa. Microbios. 1993; 79(318): 19-26.
23. Kim H, Ryu J-H, Beuchat LR. Effectiveness of disinfectants in killing Enterobacter sakazakii in suspension, dried on the surface of stainless steel, and in a biofilm. Applied and environmental microbiology. 2007; 73(4): 1256-65. [DOI:10.1128/AEM.01766-06]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.