Volume 15, Issue 2 (Mar-Apr 2021)                   mljgoums 2021, 15(2): 5-10 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yazdani Z, Baluchi I, Kalantary Khandany B, hassanshahi G. Effect of Chemotherapy on CXCL1 and CXCL10 Levels in Acute Myeloid Leukemia Patients with M4/M5 Subtype. mljgoums. 2021; 15 (2) :5-10
URL: http://mlj.goums.ac.ir/article-1-1299-en.html
1- Department of Hematology and Blood Banking, Kerman University of Medical Sciences, Kerman, Iran
2- Department of Medicine, Hematooncologist, Kerman University of Medical Sciences, Kerman, Iran
3- Department of Hematology and blood banking, Kerman University of Medical Sciences, Kerman, Iran and Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran , bahar13671023@gmail.com
Abstract:   (167 Views)
Background and objectives: Acute myeloid leukemia (AML) is a heterogeneous malignancy caused by various pathological mechanisms. Chemokines are involved in the initiation, progression, migration, survival, treatment and complications of AML. CXCL1 has an indirect effect on the progression of cancer and CXCL10 produced by leukemia cells attracts natural killer cells toward tumor sites to eradicate cancer cells. The present study investigated effects of chemotherapy on serum levels of CXCL1 and CXCL10 in patients with AML.
Methods: Throughout this case-control study, blood samples were collected from AML patients with M4/M5 subtype (n=25) before and after the first stage of a chemotherapy regimen (7+3). Serum levels of the chemokines were determined using commercial ELISA kits. Data were analyzed using two-sample and paired T-test in SPSS 22 software.
Results: The level of CXCL10 was high in patients but decreased following chemotherapy. After the chemotherapy the patients attained partial remission. However, the level of CXCL1 did not change in the patients.
Conclusion: Although chemotherapy could decrease CXCL10 levels and induce partial remission, CXCL1 levels does not change in AML patients with M4/M5 subtype. Based on the results, the employment of CXCL1 and CXCL10 inhibitors in the chemotherapy regimen could prevent relapse in the later stages or even reduce the duration of treatment.
Full-Text [PDF 766 kb]   (59 Downloads) |   |   Full-Text (HTML)  (35 Views)  
Research Article: Original Paper | Subject: Laboratory hematology
Received: 2020/06/3 | Accepted: 2020/08/5 | Published: 2021/02/28 | ePublished: 2021/02/28

References
1. Brenner AK, Reikvam H, Bruserud O. A Subset of Patients with Acute Myeloid Leukemia Has Leukemia Cells Characterized by Chemokine Responsiveness and Altered Expression of Transcriptional as well as Angiogenic Regulators. Frontiers in immunology. 2016;7:205. [DOI:10.3389/fimmu.2016.00205] [PubMed] [Google Scholar]
2. Khorramdelazad H, Mortazavi Y, Momeni M, Arababadi MK, Khandany BK, Moogooei M, et al. Lack of Correlation Between the CCR5-Delta32 Mutation and Acute Myeloid Leukemia in Iranian Patients. Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion. 2015;31(1):29-31. [DOI:10.1007/s12288-014-0408-y] [PubMed] [Google Scholar]
3. Kupsa T, Horacek JM, Jebavy L. The role of cytokines in acute myeloid leukemia: a systematic review. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2012;156(4):291-301. [DOI:10.5507/bp.2012.108] [PubMed] [Google Scholar]
4. Faaij CM, Willemze AJ, Revesz T, Balzarolo M, Tensen CP, Hoogeboom M, et al. Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatric blood & cancer. 2010;55(2):344-8. [DOI:10.1002/pbc.22500] [PubMed] [Google Scholar]
5. Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology. 2014;3(1):e27663. [DOI:10.4161/onci.27663] [PubMed] [Google Scholar]
6. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood. 2010;116(20):4251-61. [DOI:10.1182/blood-2010-01-262071] [PubMed] [Google Scholar]
7. Khandany BK, Hassanshahi G, Khorramdelazad H, Balali Z, Shamsizadeh A, Arababadi MK, et al. Evaluation of circulating concentrations of CXCL1 (Gro-alpha), CXCL10 (IP-10) and CXCL12 (SDF-1) in ALL patients prior and post bone marrow transplantation. Pathology, research and practice. 2012;208(10):615-9. [DOI:10.1016/j.prp.2012.06.009] [PubMed] [Google Scholar]
8. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382(6592):635-8. [DOI:10.1038/382635a0] [PubMed] [Google Scholar]
9. Karl E WK, Zeitlin B, Kaneko T, Wurtzel L, Jin T, Chang J, et al. Bcl-2 acts in a proangiogenic signaling pathway through nuclear factor-kappaB and CXC chemokines. Cancer Res. 2005; 65: 5063-9. [DOI:10.1158/0008-5472.CAN-05-0140] [PubMed] [Google Scholar]
10. Karl E, Zhang Z, Dong Z, Neiva KG, Soengas MS, Koch AE, et al. Unidirectional crosstalk between Bcl-xL and Bcl-2 enhances the angiogenic phenotype of endothelial cells. Cell death and differentiation. 2007;14(9):1657-66. [DOI:10.1038/sj.cdd.4402174] [PubMed] [Google Scholar]
11. Vazirinejad R, Ahmadi Z, Kazemi Arababadi M, Hassanshahi G, Kennedy D. The biological functions, structure and sources of CXCL10 and its outstanding part in the pathophysiology of multiple sclerosis. Neuroimmunomodulation. 2014; 21(6): 322-30. [DOI:10.1159/000357780] [PubMed] [Google Scholar]
12. Bruserud Ø, Olsnes Kittang A. The Chemokine System in Experimental and Clinical Hematology. Curr Top Microbiol Immunol. 2010; 341: 3-12. doi: 10.1007/82_2010_18. [DOI:10.1007/978-3-642-12639-0] [PubMed] [Google Scholar]
13. Robledo MM, Bartolome RA, Longo N, Rodriguez-Frade JM, Mellado M, Longo I, et al. Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. The Journal of biological chemistry. 2001;276(48):45098-105. [DOI:10.1074/jbc.M106912200] [PubMed] [Google Scholar]
14. Bruserud O, Ryningen A, Olsnes AM, Stordrange L, Oyan AM, Kalland KH, et al. Subclassification of patients with acute myelogenous leukemia based on chemokine responsiveness and constitutive chemokine release by their leukemic cells. Haematologica. 2007; 92(3): 332-41. [DOI:10.3324/haematol.10148] [PubMed] [Google Scholar]
15. Kittang AO, Hatfield K, Sand K, Reikvam H, Bruserud O. The chemokine network in acute myelogenous leukemia: molecular mechanisms involved in leukemogenesis and therapeutic implications. Current topics in microbiology and immunology. 2010;341:149-72. [DOI:10.1007/82_2010_25] [PubMed] [Google Scholar]
16. de Alvarenga EC, Silva WN, Vasconcellos R, Paredes-Gamero EJ, Mintz A, Birbrair A. Promyelocytic leukemia protein in mesenchymal stem cells is essential for leukemia progression. Annals of hematology. 2018;97(10):1749-55. [DOI:10.1007/s00277-018-3463-x] [PubMed] [Google Scholar]
17. Dufour JH, Dziejman M, Liu MT, Leung JH, Lane TE, Luster AD. IFN-gamma-inducible protein 10 (IP-10; CXCL10)-deficient mice reveal a role for IP-10 in effector T cell generation and trafficking. Journal of immunology (Baltimore, Md : 1950). 2002;168(7):3195-204. [DOI:10.4049/jimmunol.168.7.3195] [PubMed] [Google Scholar]
18. Wightman SC, Uppal A, Pitroda SP, Ganai S, Burnette B, Stack M, et al. Oncogenic CXCL10 signalling drives metastasis development and poor clinical outcome. British journal of cancer. 2015;113(2):327-35. [DOI:10.1038/bjc.2015.193] [PubMed] [Google Scholar]
19. Qian L, Yu S, Yin C, Zhu B, Chen Z, Meng Z, et al. Plasma IFN-gamma-inducible chemokines CXCL9 and CXCL10 correlate with survival and chemotherapeutic efficacy in advanced pancreatic ductal adenocarcinoma. Pancreatology : official journal of the International Association of Pancreatology (IAP) [et al]. 2019;19(2):340-5. [DOI:10.1016/j.pan.2019.01.015] [PubMed] [Google Scholar]
20. Wennerberg E, Kremer V, Childs R, Lundqvist A. CXCL10-induced migration of adoptively transferred human natural killer cells toward solid tumors causes regression of tumor growth in vivo. Cancer immunology, immunotherapy : CII. 2015;64(2):225-35. [DOI:10.1007/s00262-014-1629-5] [PubMed] [Google Scholar]
21. Olsnes AM, Ersvaer E, Ryningen A, Paulsen K, Hampson P, Lord JM, et al. The protein kinase C agonist PEP005 increases NF-kappaB expression, induces differentiation and increases constitutive chemokine release by primary acute myeloid leukaemia cells. British journal of haematology. 2009; 145(6): 761-74 [DOI:10.1111/j.1365-2141.2009.07691.x] [PubMed] [Google Scholar]
22. Arenberg DA, Kunkel SL, Polverini PJ, Morris SB, Burdick MD, Glass MC, et al. Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. The Journal of experimental medicine. 1996; 184(3): 981-92. [DOI:10.1084/jem.184.3.981] [PubMed] [Google Scholar]
23. Acharyya S, Oskarsson T, Vanharanta S, Malladi S, Kim J, Morris PG, et al. A CXCL1 paracrine network links cancer chemoresistance and metastasis. Cell. 2012;150(1):165-78. [DOI:10.1016/j.cell.2012.04.042] [PubMed] [Google Scholar]
24. Yazdani Z, Mousavi Z, Ghasemimehr N, Kalantary Khandany B, Nikbakht R, Jafari E, et al. Differential regulatory effects of chemotherapeutic protocol on CCL3_CCL4_CCL5/CCR5 axes in acute myeloid leukemia patients with monocytic lineage. Life sciences. 2019; 240: 117071. [DOI:10.1016/j.lfs.2019.117071] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal