Volume 14, Issue 4 (Jul-Aug 2020)                   mljgoums 2020, 14(4): 31-37 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

haeri S T, azarbayjani M A, peeri M. Effect of Eight Weeks of Aerobic Exercise and Vitamin D Supplementation on 8-hydroxy-2'-deoxyguanosine and O6-methylguanine DNA methyltransferase in Lung of Rats Poisoned with Hydrogen Peroxide. mljgoums. 2020; 14 (4) :31-37
URL: http://mlj.goums.ac.ir/article-1-1279-en.html
1- Department of Exercise Physiology, Central Tehran Branch,
2- Department of Exercise Physiology, Central Tehran Branch, I , mail: m_azarbayjani@iauctb.ac.ir
Abstract:   (747 Views)
Background and Objectives: Prolonged exercise can reduce physiological capacities and cause DNA damage by inducing oxidative stress and inflammatory responses. Aerobic exercise reduces the risk of cancer by activating DNA repair enzymes and reducing oxidative stress. The aim of the present study was to investigate effects of eight weeks of aerobic exercise with and without vitamin D supplementation on DNA damage.
   Methods: Forty-eight adult male rats were randomly divided into six groups: control (C), H2O2 (H), H2O2 and vitamin D (HD), H2O2 and exercise (HE), H2O2,, vitamin D and exercise (HDE), and dimethyl sulfoxide. Cancer was stimulated through intraperitoneal injection of H2O2 (2 mmol/kg). Animals in groups HE and HDE ran on treadmill for eight weeks. Concentration of 8-hydroxy-2chr('39')-deoxyguanosine (8-OHdG) and O6-methylguanine DNA methyltransferase (MGMT) was measured by enzyme-linked immunosorbent assay. Statistical analysis of data was carried out using SPSS 22 at significance level of 0.05.
   Results: Vitamin D supplementation significantly lowered the level of 8-OHdG expression compared to the control group (P=0.0001). The 8-OHdG expression in the exercise group was slightly lower than control group (P=0.063). Combination of exercise and vitamin D supplementation had no significant effect on expression of 8-OHdG (P=0.281). Both exercise and vitamin D supplementation significantly increased MGMT expression compared to the control group (P=0.0001 and P=0.040). However, combination of exercise and vitamin D supplementation had no significant effect on MGMT expression (P=0.326).
  Conclusion: The results showed that aerobic exercise and vitamin D supplementation can have protective effects against DNA damage, possibly by increasing antioxidant capacity and DNA repair.
Full-Text [PDF 820 kb]   (133 Downloads)    
Type of Study: Original Paper | Subject: Sport Physiology
Received: 2020/01/19 | Accepted: 2020/03/7 | Published: 2020/06/30 | ePublished: 2020/06/30

1. Mitchell Kanter. Free radicals, exercise and antioxidant supplementation. Proc Nutr Soc. 1998; 57(1): 9-13. [DOI:10.1079/PNS19980004] [PubMed] [Google Scholar]
2. Aldred S. Oxidative and nitrative changes seen in lipoproteins following exercise. Atherosclerosis. 2007; 192(1): 1-8. [DOI:10.1016/j.atherosclerosis.2007.02.001] [PubMed] [Google Scholar]
3. Podhorska-Okolow M, Dziegiel P, Gomulkiewicz A,Kisiela D, Dolinska-Krajewska B, Jethon Z, et al. Exercise-induced apoptosis in rat kidney is mediated by both angiotensin II AT1 and AT2 receptors. Histol Histopathol. 2006; 21(5): 459-66. doi: 10.14670/HH- 21.459. [PubMed] [Google Scholar]
4. Haigis MC, Yankner BA. The aging stress response. Molecular cell. 2010; 40(2): 333-44. doi:10.1016/j. molcel.2010.10.002. [DOI:10.1016/j.molcel.2010.10.002] [Google Scholar]
5. Hoffman JR, Im J, Kang J, Maresh CM, Kraemer WJ, French D, et al. Comparison of low- and highintensity resistance exercise on lipid peroxidation: role of muscle oxygenation. J Strength Cond Res. 2007; 21(1): 118-22. [DOI:10.1519/00124278-200702000-00022] [PubMed] [Google Scholar]
6. Elosua R, Molina L, Fito M, Arquer A, Sanchez-Quesada JL, Covas MI, et al. Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis. 2003; 167(2): 327-34. [DOI:10.1016/S0021-9150(03)00018-2] [PubMed] [Google Scholar]
7. Rogers CJ, Colbert LH, Greiner JW, Perkins SN, Hursting SD. Physical activity and cancer prevention: pathways and targets for intervention. Sports Med. 2008; 38: 271-296. [DOI:10.2165/00007256-200838040-00002] [PubMed] [Google Scholar]
8. Hung RJ, Baragatti M, Thomas D, McKay J, Szeszenia-Dabrowska N, Zaridze D, et al. Inherited predisposition of lung cancer: a hierarchical modeling approach to DNA repair and cell cycle control pathways. Cancer Epidemiol Biomarkers Prev. 2007; 16: 2736-2744. [DOI:10.1158/1055-9965.EPI-07-0494] [PubMed] [Google Scholar]
9. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001; 411(6835): 366-374. DOI:10.1038/35077232. [DOI:10.1038/35077232] [PubMed] [Google Scholar]
10. Aquilina G, Biondo R, Dogliotti E, Meuth M, Bignami M. Expression of the endogenous O6-methylguanine DNAmethyltransferase protects Chinese hamster ovary cells from spontaneous G:C to A:T transitions. Cancer Res. 1992; 52(23): 6471-55. [Google Scholar]
11. Kulis M, Esteller M. DNA methylation and cancer. Adv Genet. 2010; 70: 27-56. doi: 10.1016/B978-0-12-380866-0.60002-2. [DOI:10.1016/B978-0-12-380866-0.60002-2] [Google Scholar]
12. Gerson SL. MGMT: its role in cancer aetiology and cancer therapeutics. Nat Rev Cancer 2004; 4(4): 296-307. [DOI:10.1038/nrc1319] [PubMed] [Google Scholar]
13. Fetahu IS, Höbaus J, Kállay E. Vitamin D and the epigenome. Front Physiol. 2014; 5:164. doi: 10.3389/fphys.2014.00164. [DOI:10.3389/fphys.2014.00164] [PubMed] [Google Scholar]
14. Soares JP, Silva AM, Oliveira MM, Peixoto F, Gaivão I, Mota MP. Effects of combined physical exercise training on DNA damage and repair capacity: role of oxidative stress changes. Age (Dordr). 2015; 37(3): 61. Age (Dordr). 2015; 37(3): 9799. doi: 10.1007/s11357-015-9799-4. [DOI:10.1007/s11357-015-9799-4] [PubMed] [Google Scholar]
15. Black PN, Scragg R. Relationship between Serum 25-Hydroxyvitamin D and Pulmonary Function in the Third National Health and Nutrition Examination Survey. Chest. 2005; 128(6): 3792-3798. [DOI:10.1378/chest.128.6.3792] [PubMed] [Google Scholar]
16. Ewa Maj, Beata Filip-Psurska, Magdalena Milczarek, Mateusz Psurski, Andrzej Kutner, and Joanna Wietrzyk. Vitamin D derivatives potentiate the anticancer and anti-angiogenic activity of tyrosine kinase inhibitors in combination with cytostatic drugs in an A549 non-small cell lung cancer model. Int J Oncol. 2018; 52(2): 337-366. doi: 10.3892/ijo.2017.4228. [DOI:10.3892/ijo.2017.4228] [PubMed] [Google Scholar]
17. Güzey M, Sattler C, DeLuca HF. Combinational effects of vitamin D3 and retinoic acid (all trans and 9 cis) on proliferation, differentiation, and programmed cell death in two small cell lung carcinoma cell lines. Biochem Biophys Res Commun. 1998; 249: 735-744. doi: 10.1006/bbrc.1998.9186. [DOI:10.1006/bbrc.1998.9186] [PubMed] [Google Scholar]
18. Slominski AT, Brożyna AA, Zmijewski MA, Jóźwicki W, Jetten AM, Mason RS, Tuckey RC, Elmets CA. Vitamin D signaling and melanoma: Role of vitamin D and its receptors in melanoma progression and management. Lab Invest. 2017; 97: 706-724. doi: 10.1038/labinvest.2017.3. [DOI:10.1038/labinvest.2017.3] [PubMed] [Google Scholar]
19. Chatterjee M. Vitamin D and genomic stability. Mutat Res. 2001; 475(1-2): 69-87. [DOI:10.1016/S0027-5107(01)00080-X] [PubMed] [Google Scholar]
20. Slominski AT, Janjetovic Z, Kim TK, Wasilewski P, Rosas S. Novel non-calcemic secosteroids that are produced by human epidermal keratinocytes protect against solar radiation. J Steroid Biochem Mol Biol. 2015; 148: 52-63. [DOI:10.1016/j.jsbmb.2015.01.014] [PubMed] [Google Scholar]
21. Li SF, Liu HX, Zhang YB, Yan YC, Li YP. The protective effects of alpha-ketoacids against oxidative stress on rat spermatozoa in vitro. Asian J Androl. 2010; 12(2): 247-56. doi: 10.1038/aja.2009.78. [DOI:10.1038/aja.2009.78] [PubMed] [Google Scholar]
22. Halder SK, Sharan C, Al-Hendy A. 1, 25-dihydroxyvitamin D3 treatment shrinks uterine leiomyoma tumors in the Eker rat model. Biol Reprod. 2012; 86(4): 116. doi: 10.1095/biolreprod.111.098145. [DOI:10.1095/biolreprod.111.098145] [PubMed] [Google Scholar]
23. Husain K, Hazelrigg SR. Oxidative injury due to chronic nitric oxide synthase inhibition in rat: effect of regular exercise on the heart. Biochim Biophys Acta. 2002; 1587(1): 75-82. doi:10.1016/S0925-4439(02)00070-4. [DOI:10.1016/S0925-4439(02)00070-4] [PubMed] [Google Scholar]
24. Dange RB, Agarwal D, Masson GS, Vila J, Wilson B, Nair A, et al. Central blockade of TLR4 improves cardiac function and attenuates myocardial inflammation in angiotensin II- induced hypertension. Cardiovasc Res. 2014; 103(1): 17-27. doi: 10.1093/cvr/cvu067. [DOI:10.1093/cvr/cvu067] [PubMed] [Google Scholar]
25. Plant DR, Gregorevic P, Warmington SA, Williams DA, Lynch GS. Endurance training adaptations modulate the redox-force relationship of rat isolated slow‐twitch skeletal muscles. Clin Exp Pharmacol Physiol. 2003; 30(1-2): 77-81. [DOI:10.1046/j.1440-1681.2002.03794.x] [PubMed] [Google Scholar]
26. Wu LL, Chiou CC, Chang PY, Wu JT. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta. 2004; 339(1-2): 1-9. [DOI:10.1016/j.cccn.2003.09.010] [PubMed] [Google Scholar]
27. Fogarty MC1, Hughes CM, Burke G, Brown JC, Trinick TR, Duly E, et al. Exercise-induced lipid peroxidation: implications for deoxyribonucleic acid damage and systemic free radical generation. Environ Mol Mutagen. 2011; 52(1): 35-42. doi: 10.1002/em.20572. [DOI:10.1002/em.20572] [PubMed] [Google Scholar]
28. Díaz-Castro J, Guisado R, Kajarabille N, García C, Guisado IM, De Teresa C, et al. Phlebodium decumanum is a natural supplement that ameliorates the oxidative stress and inflammatory signalling induced by strenuous exercise in adult humans. Eur J Appl Physiol. 2012; 112(8): 3119-28. doi: 10.1007/s00421-011-2295-3. [DOI:10.1007/s00421-011-2295-3] [PubMed] [Google Scholar]
29. McMillan EM, Graham DA, Rush JWE, Quadrilatero J. Decreased DNA fragmentation and apoptotic signaling in soleus muscle of hypertensive rats following 6 weeks of treadmill training. J Appl Physiol. 2012; 113(7): 1048-1057. [DOI:10.1152/japplphysiol.00290.2012] [PubMed] [Google Scholar]
30. Villaño D, Vilaplana C, Medina S, Cejuela-Anta R, Martínez-Sanz JM, Gil P, Genieser HG, et al. Effect of elite physical exercise by triathletes on seven catabolites of DNA oxidation. Free Radic Res. 2015; 49(8): 973-83. doi: 10.3109/10715762.2015.1025388. [DOI:10.3109/10715762.2015.1025388] [PubMed] [Google Scholar]
31. Nakaya Y, Hata Y, Ishida K, Takahashi A, Morita K, Rokutan K. Approach to novel functional foods for stress control 2. Microarray assessment of exercise in healthy volunteers. J Med Invest. 2005; 52 Suppl: 242-3. [DOI:10.2152/jmi.52.242] [PubMed] [Google Scholar]
32. Bloomer RJ, Creasy AK, Smith WA. Physical work-induced oxidative stress is exacerbated in young cigarette smokers. Nicotine Tob Res. 2007; 9: 205-211. [DOI:10.1080/14622200601078541] [PubMed] [Google Scholar]
33. Poulsen HE, Weimann A, Loft S. Methods to detect DNA damage by free radicals: relation to exercise. Proc Nutr Soc. 1999; 58(4): 1007-14. [DOI:10.1017/S0029665199001329] [PubMed] [Google Scholar]
34. Bloomer RJ, Goldfarb AH, Wideman L, Mckenzie MJ, Consitt LA. Effects of acute aerobic and anaerobic exercise on blood markers of oxidative stress. J Strength Cond Res. 2005; 19(2): 276-285. DOI:10.1519/14823.1. [DOI:10.1519/14823.1] [PubMed] [Google Scholar]
35. Peters EM, Van Eden M, Tyler N, Ramautar A, Chuturgoon AA. Prolonged exercise does not cause lymphocyte DNA damage or increased apoptosis in welltrained endurance athletes. Eur J Appl Physiol. 2006; 98(2): 124-31. [DOI:10.1007/s00421-006-0227-4] [PubMed] [Google Scholar]
36. Sato Y, Nanri H, Ohta M, Kasai H, Ikeda M. Increase of human MTH1 and decrease of 8-hydroxydeoxyguanosine in leukocyte DNA by acute and chronic exercise in healthy male subjects. Biochem Biophys Res Commun. 2003; 305(2): 333-8. DOI:10.1016/s0006-291x(03)00774-5. [DOI:10.1016/S0006-291X(03)00774-5] [PubMed] [Google Scholar]
37. Nojima H, Watanabe H, Yamane K, Kitahara Y, Sekikawa K, Yamamoto H, et al. Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism. 2008; 57(2): 170-6. doi: 10.1016/j.metabol.2007.08.021. [DOI:10.1016/j.metabol.2007.08.021] [PubMed] [Google Scholar]
38. Devries MC, Hamadeh MJ, Glover AW, Raha S, Samjoo IA, Tarnopolsky MA. Endurance training without weight loss lowers systemic, but not muscle, oxidative stress with no effect on inflammation in lean and obese women. Free Radic Biol Med. 2008; 45(4): 503-11. doi: 10.1016/j.freeradbiomed.2008.04.039. [DOI:10.1016/j.freeradbiomed.2008.04.039] [PubMed] [Google Scholar]
39. Radák Z, Naito H, Kaneko T, Tahara S, Nakamoto H, Takahashi R, et al. Exercise training decreases DNA damage and increases DNA repair and resistance against oxidative stress of proteins in aged rat skeletal muscle. Pflugers Arch. 2002; 445(2): 273-8. [DOI:10.1007/s00424-002-0918-6] [PubMed] [Google Scholar]
40. Radak Z, Apor P, Pucsok J, Berkes I, Ogonovszky H, Pavlik G, et al. Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci. 2003; 72: 1627-1633. [DOI:10.1016/S0024-3205(02)02476-1] [PubMed] [Google Scholar]
41. Federico A1, Morgillo F, Tuccillo C, Ciardiello F, Loguercio C. Chronic inflammation and oxidative stress in human carcinogenesis. Int J Cancer. 2007; 121(11): 2381-6. [DOI:10.1002/ijc.23192] [PubMed] [Google Scholar]
42. Ji, L. L. Modulation of skeletal muscle antioxidant defense by exercise: Role of redox signaling. Free Radic Biol Med. 44:142-152, 2008. [DOI:10.1016/j.freeradbiomed.2007.02.031] [PubMed] [Google Scholar]
43. Radom-Aizik S, Zaldivar F Jr, Leu SY, Galassetti P, Cooper DM. Effects of 30 min of aerobic exercise on gene expression in human neutrophils. J Appl Physiol (1985). 2008; 104(1): 236-43. [DOI:10.1152/japplphysiol.00872.2007] [PubMed] [Google Scholar]
44. Lin YY, Wu YC, Rau KM, Lin CC. Effects of physical activity on the quality of life in Taiwanese lung cancer patients receiving active treatment or off treatment. Cancer Nurs. 2013; 36: E35-E41. [DOI:10.1097/NCC.0b013e31826fb8bf] [PubMed] [Google Scholar]
45. Coyle YM, Xie XJ, Lewis CM, Bu D, Milchgrub S, Euhus DM. Role of physical activity in modulating breast cancer risk as defined by APC and RASSF1A promoter hypermethylation in nonmalignant breast tissue. Cancer Epidemiol Biomarkers Prev. 2007; 16(2): 192-6. DOI: 10.1158/1055-9965.EPI-06-0700. [DOI:10.1158/1055-9965.EPI-06-0700] [PubMed] [Google Scholar]
46. Voisin S, Eynon N, Yan X, Bishop DJ. Exercise training and DNA methylation in humans. Acta Physiol (Oxf). 2015; 213(1): 39-59. doi: 10.1111/apha.12414. [DOI:10.1111/apha.12414] [PubMed] [Google Scholar]
47. Pawlowska E, Wysokinski D, Blasiak J. Nucleotide Excision Repair and Vitamin D-Relevance for Skin Cancer Therapy. Int J Mol Sci. 2016; 17(4): 372. doi: 10.3390/ijms17040372. [DOI:10.3390/ijms17040372] [PubMed] [Google Scholar]
48. Jiang YJ, Teichert AE, Fong F, Oda Y, Bikle DD. 1alpha, 25(OH)2-dihydroxyvitamin D3/VDR protects the skin from UVB-induced tumor formation by interacting with the beta-catenin pathway. J Steroid Biochem Mol Biol. 2013; 136: 229-32. doi: 10.1016/j.jsbmb.2012.09.024. [DOI:10.1016/j.jsbmb.2012.09.024] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2007 All Rights Reserved | Medical Laboratory Journal