Volume 14, Issue 4 (Jul-Aug 2020)                   mljgoums 2020, 14(4): 20-26 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Sabzali S, Bouzari M. Phylogenic Relationship of Salmonella Serovars Isolated from Different Foodstuffs in Isfahan. mljgoums. 2020; 14 (4) :20-26
URL: http://mlj.goums.ac.ir/article-1-1274-en.html
1- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
2- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran , mbouzari@yahoo.com
Abstract:   (38 Views)
   Background and objectives: are divided into two species: Salmonella enterica and Salmonella Salmonella bongori. S. enterica has more than 2,500 serotypes. Serovars of S. enterica such as Typhimurium, Enteritidis, Paratyphi B, Paratyphi A and Newport are associated with human infections. Approximately 75% of human Salmonella infections have been associated with contaminated food such as eggs, chicken, beef, pork, dairy products, fruits and vegetables. The aim of this study was to determine the frequency of Salmonella strains isolated from various food sources in Isfahan, Iran.
    Methods: Forty Salmonella strains were isolated from 450 suspected cases referred to the veterinary reference laboratory of Isfahan Province. The isolates were identified by differential and serotyping tests and then confirmed by PCR. A phylogenic tree was constructed with 34 sequences by neighbor-joining method using the MEGA7 software (version 7.1). 
    Results: Overall, 10 Salmonella serovars were isolated from 32 chicken meat, three beef and five egg shell samples. S. enterica serovar Ouakum (20%), S. Enteritidis (17.5%) and S. Typhimurium (17.5%) were the most common serovars, while S. enterica serovar Nitra (2.5%) was found as the least prevalent isolate.
    Conclusion: In this study, S. Typhimurium species is placed in different clusters along with sequences reported from different parts of the world, indicating that the serovars are circulating all over the world.
Full-Text [PDF 943 kb]   (21 Downloads)    
Type of Study: Original Paper | Subject: Microbiology
Received: 2019/12/16 | Accepted: 2020/02/1 | Published: 2020/06/30 | ePublished: 2020/06/30

References
1. Brenner F, Villar R, Angulo F, Tauxe R, Swaminathan B. Salmonella nomenclature. J Clin Microbiol. 2000; 38(7): 2465-7. [DOI:10.1128/JCM.38.7.2465-2467.2000] [PubMed] [Google Scholar]
2. Rohrbach BW, Draughon FA, Davidson PM, Oliver SP. Prevalence of Listeria monocytogenes, Campylobacter jejuni, Yersinia enterocolitica, and Salmonella in bulk tank milk: risk factors and risk of human exposure. J food prot. 1992;55(2):93-7. [DOI:10.4315/0362-028X-55.2.93] [PubMed] [Google Scholar]
3. Wong CL, Sieo CC, Tan WS, Abdullah N, Hair-Bejo M, Abu J, et al. Evaluation of a lytic bacteriophage, Φ st1, for biocontrol of Salmonella enterica serovar Typhimurium in chickens. Int J food microbiol. 2014; 172: 92-101. [DOI:10.1016/j.ijfoodmicro.2013.11.034] [PubMed] [Google Scholar]
4. Mąka Ł, Maćkiw E, Ścieżyńska H, Pawłowska K, Popowska M. Antimicrobial susceptibility of Salmonella strains isolated from retail meat products in Poland between 2008 and 2012. Food Control. 2014; 36: 199-204. [DOI:10.1016/j.foodcont.2013.08.025] [Google Scholar]
5. Angulo FJ, Johnson KR, Tauxe RV, Cohen ML. Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquinolones in food animals. Microbiol drug res. 2000; 6: 77-83. [DOI:10.1089/mdr.2000.6.77] [PubMed] [Google Scholar]
6. Carramiñana JJ, Rota C, Agustin I, Herrera A. High prevalence of multiple resistance to antibiotics in Salmonella serovars isolated from a poultry slaughterhouse in Spain. Vet Microbiol. 2004; 104(1-2): 133-9. [DOI:10.1016/j.vetmic.2004.08.010] [PubMed] [Google Scholar]
7. Forbes BA, Sahm DF, Weissfeld AS. Study guide for Bailey & Scott's diagnostic microbiology: Mosby USA; 2007. [Google Scholar]
8. Uzzau S, Brown DJ, Wallis T, Rubino S, Leori G, Bernard S, et al. Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 2000; 125(2): 229-255. [DOI:10.1017/S0950268899004379] [PubMed] [Google Scholar]
9. Zhao S, White D, Friedman S, Glenn A, Blickenstaff K, Ayers S, et al. . Appl Environ Microb. 2008; 74(21): 6656-6662. DOI: 10.1128/AEM.01249-08. [DOI:10.1128/AEM.01249-08]
10. Janda JM, Abbott SL. The enterobacteria. American Society for Microbiology, ASM. 2006. [DOI:10.1128/9781555817541] [Google Scholar]
11. Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whichard JM, et al. International spread of an epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofloxacin. J. Infect. Dis. 2011; 204: 675-684. [DOI:10.1093/infdis/jir409] [PubMed] [Google Scholar]
12. Loongyai W, Promphet K, Kangsukul N, Noppha R, Egg A. Detection of Salmonella in egg shell and egg content from different housing systems for laying hens. IJFSB. 2010; 4: 232-234. [Google Scholar]
13. Sahm DF, Weissfeld A, Trevino E. Baily and Scott's Diagnostic Microbiology. Mosby, St Louis. 2002. [Google Scholar]
14. Oliveira S, Rodenbusch C, Cé M, Rocha S, Canal C. Evaluation of selective and non‐selective enrichment PCR procedures for Salmonella detection. Lett Appl Microbiol. 2003; 36(4): 217-221. [DOI:10.1046/j.1472-765X.2003.01294.x] [PubMed] [Google Scholar]
15. Rahn K, De Grandis S, Clarke R, McEwen S, Galan J, Ginocchio C, et al. Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol cell probes. 1992; 6: 271-279. [DOI:10.1016/0890-8508(92)90002-F] [PubMed] [Google Scholar]
16. Sharma I, Das K. Detection of invA Gene in isolated Salmonella from marketed poultry meat by PCR assay. J Food Process Technol. 2016; 7: 122-127. DOI: 10.4172/2157-7110.1000564. [DOI:10.4172/2157-7110.1000564] [Google Scholar]
17. Van Kessel J, Karns J, Perdue M. Using a portable real-time PCR assay to detect Salmonella in raw milk. J Food Process Technol. 2016; 7: 122-127. DOI: 10.4172/2157-7110.1000564. [DOI:10.4172/2157-7110.1000564] [PubMed] [Google Scholar]
18. Bosilevac JM, Guerini MN, Kalchayanand N, Koohmaraie M. Prevalence and characterization of salmonellae in commercial ground beef in the United States. Appl Environ Microbiol. 2009; 75(7): 1892-90000. [DOI:10.1128/AEM.02530-08] [PubMed] [Google Scholar]
19. Thai TH, Hirai T, Lan NT, Yamaguchi R. Antibiotic resistance profiles of Salmonella serovars isolated from retail pork and chicken meat in North Vietnam. Int J Food Microbiol. 2012; 156(2): 147-51. doi: 10.1016/j.ijfoodmicro.2012.03.016. [DOI:10.1016/j.ijfoodmicro.2012.03.016] [PubMed] [Google Scholar]
20. Saeed AA, Hasoon MF, Mohammed MH. Isolation and molecular identification of Salmonella typhimurium from chicken meat in Iraq. World Poultry Sci J. 2013; 3: 63-67. [Google Scholar]
21. Wu D, Alali W, Harrison M, Hofacre C. Prevalence of Salmonella in neck skin and bone of chickens. J food prot. 2014; 77: 1193-1197. [DOI:10.4315/0362-028X.JFP-14-006] [PubMed] [Google Scholar]
22. Paião F, Arisitides L, Murate L, Vilas-Bôas G, Vilas-Boas L, Shimokomaki M. Detection of Salmonella spp, Salmonella Enteritidis and Typhimurium in naturally infected broiler chickens by a multiplex PCR-based assay. Braz J Microbiol. 2013; 44(1): 37-41. doi: 10.1590/S1517-83822013005000002. [DOI:10.1590/S1517-83822013005000002] [PubMed] [Google Scholar]
23. Al-Hazmi M, Al-Arfaj A, Mostafa A, Ihab M. Molecular Detection of Salmonella enteric Serovar Enteritidis in Chicken-Related Samples Collected from Egypt. Life Sci J. 2013; 10(3): 2645-2649. [Google Scholar]
24. Singh S, Yadav AS, Singh SM, Bharti P. Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Res Int. 2010; 43: 2027-2030. [DOI:10.1016/j.foodres.2010.06.001] [Google Scholar]
25. Samanta I, Joardar S, Das P, Sar T, Bandyopadhyay S, Dutta T, et al. Prevalence and antibiotic resistance profiles of Salmonella serotypes isolated from backyard poultry flocks in West Bengal, India. JAPR. 2014; 23(3): 536-545. [DOI:10.3382/japr.2013-00929] [Google Scholar]
26. Chang YH. Prevalence of Salmonella spp. in poultry broilers and shell eggs in Korea. J Food Prot. 2000; 63(5): 655-658. [DOI:10.4315/0362-028X-63.5.655] [PubMed] [Google Scholar]
27. Little CL, Walsh S, Hucklesby L, Surman-Lee S, Pathak K, Hall Y, et al. Salmonella contamination in non-UK produced shell eggs on retail sale in some regions of England. Euro Surveill. 2006; 11(11): E061123.4. [DOI:10.2807/esw.11.47.03086-en] [PubMed] [Google Scholar]
28. Genovese K, Jung Y, McReynolds J, Anderson R, Nisbet D. Antimicrobial resistance and serotype prevalence of Salmonella isolated from dairy cattle in the southwestern United States. Microb drug res. 2004; 10(1): 51-56. DOI:10.1089/107662904323047808. [DOI:10.1089/107662904323047808] [PubMed] [Google Scholar]
29. Sorensen O, McFall M, Manninen K. Prevalence of Salmonella in dairy herds in Alberta. Can Vet J. 2003; 44(3): 230-235. [PubMed] [Google Scholar]
30. Skov MN, Andersen JS, Aabo S, Ethelberg S, Aarestrup FM, Sørensen AH, et al. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark. Emerg. 2007; 13(4): 638-643. doi: 10.3201/eid1304.060748. [DOI:10.3201/eid1304.060748] [PubMed] [Google Scholar]
31. Villalpando-Guzmán S, Vázquez-Quiñones CR, Natividad-Bonifacio I, Quiñones-Ramírez EI, Vázquez-Salinas C. Prevalence ofSalmonella in Chicken, Beef and Pork Meat in Mexico City. AJMR. 2016; 4: 5-11. [Google Scholar]
32. Aslam M, Checkley S, Avery B, Chalmers G, Bohaychuk V, Gensler G, et al. Phenotypic and genetic characterization of antimicrobial resistance in Salmonella serovars isolated from retail meats in Alberta, Canada. Food microbiol. 2012; 32(1): 110-117. [DOI:10.1016/j.fm.2012.04.017] [PubMed] [Google Scholar]
33. Little C, Richardson J, Owen R, De Pinna E, Threlfall E. Campylobacter and Salmonella in raw red meats in the United Kingdom: prevalence, characterization and antimicrobial resistance pattern, 2003-2005. Food Microbiol. 2008; 25(3): 538-43. doi: 10.1016/j.fm.2008.01.001. [DOI:10.1016/j.fm.2008.01.001] [PubMed] [Google Scholar]
34. Yang B, Qu D, Zhang X, Shen J, Cui S, Shi Y, et al. Prevalence and characterization of Salmonella serovars in retail meats of marketplace in Shaanxi, China 2010; 141(1-2): 63-72. d. Int J Food Microbiol.oi: 10.1016/j.ijfoodmicro.2010.04.015. [DOI:10.1016/j.ijfoodmicro.2010.04.015] [PubMed] [Google Scholar]
35. Afema JA, Sischo WM. Salmonella in wild birds utilizing protected and human impacted habitats, Uganda. EcoHealth. 2016; 13(3): 558-569. [DOI:10.1007/s10393-016-1149-1] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal