Volume 14, Issue 6 (Nov-Dec 2020)                   mljgoums 2020, 14(6): 41-47 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

rasouli H, farzanegi P, abbaszadeh H. Effect of an Exercise Training Course and Bone Marrow-Derived Stem Cell injection on Pax7 and Myogenin Expression in a Rat Model of Arthritis. mljgoums. 2020; 14 (6) :41-47
URL: http://mlj.goums.ac.ir/article-1-1265-en.html
1- Exercise Physiology Department, Sari Branch, Islamic Azad University, Sari, Iran
2- Exercise Physiology Department, Sari Branch, Islamic Azad University, Sari, Iran , parvin.farzanegi@gmail.com
Abstract:   (226 Views)
Background and objectives: Osteoarthritis is one of the most common arthritic diseases and a main cause of pain and disability. Simultaneous downexpression of paired box 7 (Pax7) and myogenin genes, as indicators of satellite cells activation is evident in osteoarthritis. This study assessed effects of an exercise training course and stem cell injection on the expression of Pax7 and myogenin in gastrocnemius muscle of rats with arthritis.
Methods: Thirty five male rats aged 6–8 weeks and weighing 250–300 g were divided into five groups: control, patient, exercise, mesenchymal stem cell (MSC), and exercise+MSC. Osteoarthritis was induced in rats by surgery. The training program consisted of 30 minutes of running on a non-slip treadmill at a speed of 16 m/min. The rats were injected with 1×106 cells/kg MSC. The expression of Pax7 and myogenin was measured by real–time PCR. Data were analysed with SPSS (version 23) using one-way analysis of variance.  
Results: Both Pax7 and myogenin were significantly overexpressed in the exercise+MSC group compared to the patient group (P<0.001).
Conclusion: The combination of MSC therapy and training had more positive effects on Pax7 and myogenin expression compared to training and MSC therapy alone.
Full-Text [PDF 1025 kb]   (101 Downloads)    
Type of Study: Original Paper | Subject: Sport Physiology
Received: 2019/11/16 | Accepted: 2020/01/6 | Published: 2020/10/29 | ePublished: 2020/10/29

References
1. Wallace IJ, Worthington S, Felson DT, Jurmain RD, Wren KT, Maijanen H, et al. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences. 2017; 114(35): 9332-6. [DOI:10.1073/pnas.1703856114] [PubMed] [Google Scholar]
2. Gupta S, Hawker GA, Laporte A, Croxford R, Coyte PC. The economic burden of disabling hip and knee osteoarthritis (OA) from the perspective of individuals living with this condition. Rheumatology. 2005; 44(12): 1531-7. [DOI:10.1093/rheumatology/kei049] [PubMed] [Google Scholar]
3. Nicholls M, Manjoo A, Shaw P, Niazi F, Rosen J. A comparison between rheological properties of intra-articular hyaluronic acid preparations and reported human synovial fluid. Advances in therapy. 2018; 35(4): 523-30. [DOI:10.1007/s12325-018-0688-y] [PubMed] [Google Scholar]
4. Zhao L, Kaye AD, Abd-Elsayed A. Stem Cells for the Treatment of Knee Osteoarthritis: A Comprehensive Review. Pain Physician. 2018; 21(3): 229-242. [DOI:10.36076/ppj.2018.3.229] [PubMed] [Google Scholar]
5. Karrar S, Mackworth-Young C. Local Therapies for Osteoarthritis-An Update and a Review of the Literature. Osteoarthritis: Progress in Basic Research and Treatment. 2015; 207. [DOI:10.5772/60557] [Google Scholar]
6. Peeler J, Ripat J. The effect of low-load exercise on joint pain, function, and activities of daily living in patients with knee osteoarthritis. The Knee. 2018; 25(1): 135-45. doi: 10.1016/j.knee.2017.12.003. [DOI:10.1016/j.knee.2017.12.003] [PubMed] [Google Scholar]
7. Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, et al. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem cell research & therapy. 2016; 7(1): 160. doi: 10.1186/s13287-016-0420-2. [DOI:10.1186/s13287-016-0420-2] [PubMed] [Google Scholar]
8. Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, Fini M, Giardino R, Facchini A, Grigolo B. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther. 2013; 15(1): R22.doi: 10.1186/ar4156. [DOI:10.1186/ar4156] [PubMed] [Google Scholar]
9. Liu W, Sun Y, He Y, Zhang H, Zheng Y, Yao Y, et al. IL-1β impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int J Mol Med. 2017; 39(2): 317-326.doi: 10.3892/ijmm.2016.2832. [DOI:10.3892/ijmm.2016.2832] [PubMed] [Google Scholar]
10. Van Buul GM, Siebelt M, Leijs MJ, Bos P, Waarsing JH, Kops N, et al. Mesenchymal stem cell therapy in a rat model of osteoarthritis. Osteoarthritis and Cartilage. 2012; 20: S275. [DOI:10.1016/j.joca.2012.02.468] [Google Scholar]
11. Segal NA, Glass NA. Is quadriceps muscle weakness a risk factor for incident or progressive knee osteoarthritis? The Physician and sportsmedicine. 2011; 39(4): 44-50. DOI: 10.3810/psm.2011.11.1938. [DOI:10.3810/psm.2011.11.1938] [PubMed] [Google Scholar]
12. Heidari B. Knee osteoarthritis prevalence, risk factors, pathogenesis and features: Part I. Caspian journal of internal medicine. 2011; 2(2): 205-212. [PubMed] [Google Scholar]
13. Azar MS, Kariminasab MH, Sajjadi Saravi M, Shafiei SE, Daneshpoor SM, Hadian A, et al. Relationship between Pain and Disability Levels of Patients with Knee Osteoarthritis and Muscle Weakness, Deformity and Radiographic Changes. Journal of Mazandaran University of Medical Sciences. 2012; 21(86): 85-92. [Google Scholar]
14. Behzad B, Asgari AR. The Interactive Role of Exercise and Satellite Cells in Skeletal Muscle Regeneration and Hypertrophy. 2015; 16(4): 47-63. [Google Scholar]
15. Murach KA, White SH, Wen Y, Ho A, Dupont-Versteegden EE, McCarthy JJ, et al. Differential requirement for satellite cells during overload-induced muscle hypertrophy in growing versus mature mice. Skeletal muscle. 2017; 7(1): 14. [DOI:10.1186/s13395-017-0132-z] [PubMed] [Google Scholar]
16. Nogami KI, Blanc M, Takemura F, Takeda SI, Miyagoe-Suzuki Y. Making Skeletal Muscle from Human Pluripotent Stem Cells. Muscle Cell and Tissue: Current Status of Research Field. 2018; 117. [DOI:10.5772/intechopen.77263] [Google Scholar]
17. Morgan JE, Zammit PS. Direct effects of the pathogenic mutation on satellite cell function in muscular dystrophy. Exp Cell Res. 2010; 316(18): 3100-8. doi: 10.1016/j.yexcr.2010.05.014. [DOI:10.1016/j.yexcr.2010.05.014] [PubMed] [Google Scholar]
18. Miersch C, Stange K, Hering S, Kolisek M, Viergutz T, Röntgen M. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile. Scientific reports. 2017; 27(7): 45052. [DOI:10.1038/srep45052] [PubMed] [Google Scholar]
19. Chen JN, Chen Y, Wei YY, Raza MA, Zou Q, Xi XY, et al. Regulation of m 6 A RNA Methylation and Its Effect on Myogenic Differentiation in Murine Myoblasts. Molecular Biology. 2019; 53(3): 384-92. [DOI:10.1134/S002689331903004X] [PubMed] [Google Scholar]
20. Wang Y, Zhang RP, Zhao YM, Li QQ, Yan XP, Liu JY, et al. Effects of Pax3 and Pax7 expression on muscle mass in the Pekin duck (Anas platyrhynchos domestica). Genetics and Molecular Research. 2015; 14(3): 11495-504. DOI: 10.4238/2015.September.28.1. [DOI:10.4238/2015.September.28.1] [PubMed] [Google Scholar]
21. Zammit PS. Function of the myogenic regulatory factors Myf5, MyoD, Myogenin and MRF4 in skeletal muscle, satellite cells and regenerative myogenesis. Semin Cell Dev Biol. 2017; 72: 19-32. doi: 10.1016/j.semcdb.2017.11.011. [DOI:10.1016/j.semcdb.2017.11.011] [PubMed] [Google Scholar]
22. Relaix F, Montarras D, Zaffran S, Gayraud-Morel B, Rocancourt D, Tajbakhsh S, et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol. 2006; 172(1): 91-102. [DOI:10.1083/jcb.200508044] [PubMed] [Google Scholar]
23. Martin NR, Lewis MP. Satellite cell activation and number following acute and chronic exercise: a mini review. Cellular and Molecular Exercise Physiology. 2012; 1(1): e3. [DOI:10.7457/cmep.v1i1.e3] [Google Scholar]
24. Hanssen KE, Kvamme NH, Nilsen TS, Rønnestad B, Ambjørnsen IK, Norheim F, et al. The effect of strength training volume on satellite cells, myogenic regulatory factors, and growth factors. Scand J Med Sci Sports. 2013; 23(6): 728-39.doi: 10.1111/j.1600-0838.2012.01452.x. [DOI:10.1111/j.1600-0838.2012.01452.x] [PubMed] [Google Scholar]
25. Oishi Y, Tsukamoto H, Yokokawa T, Hirotsu K, Shimazu M, Uchida K, et al. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for muscle hypertrophy. J Appl Physiol (1985). 2015; 118(6): 742-9.doi: 10.1152/japplphysiol.00054.2014. [DOI:10.1152/japplphysiol.00054.2014] [PubMed] [Google Scholar]
26. Malfait AM, Little CB. On the predictive utility of animal models of osteoarthritis. Arthritis research & therapy. 2015; 17(1): 225. [DOI:10.1186/s13075-015-0747-6] [PubMed] [Google Scholar]
27. de Souza Silva JM, Alabarse PV, Teixeira VD, Freitas EC, de Oliveira FH, da Silva Chakr RM, et al. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection. PLoS One. 2018; 13(4): e0196682.doi: 10.1371/journal.pone.0196682. [DOI:10.1371/journal.pone.0196682] [PubMed] [Google Scholar]
28. Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function. Development. 2015; 142(9): 1572-81.doi: 10.1242/dev.114223. [DOI:10.1242/dev.114223] [PubMed] [Google Scholar]
29. Chacon-Cabrera A, Fermoselle C, Urtreger AJ, Mateu-Jimenez M, Diament MJ, de Kier Joffé ED, et al. Pharmacological strategies in lung cancer‐induced cachexia: Effects on muscle proteolysis, autophagy, structure, and weakness. J Cell Physiol. 2014; 229(11): 1660-72. doi: 10.1002/jcp.24611. [DOI:10.1002/jcp.24611] [PubMed] [Google Scholar]
30. Fransen M, Nairn L, Winstanley J, Lam P, Edmonds J. Physical activity for osteoarthritis management: a randomized controlled clinical trial evaluating hydrotherapy or Tai Chi classes. Arthritis Rheum. 2007; 57(3): 407-14.doi: 10.1002/art.22621. [DOI:10.1002/art.22621] [PubMed] [Google Scholar]
31. Gibbs N, Diamond R, Sekyere EO, Thomas WD. Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet-rich plasma, and musculoskeletal exercises: a case series. J Pain Res. 2015; 8: 799-806.doi: 10.2147/JPR.S92090. [DOI:10.2147/JPR.S92090] [PubMed] [Google Scholar]
32. Liu M, Stevens-Lapsley JE, Jayaraman A, Ye F, Conover C, Walter GA, et al. Impact of treadmill locomotor training on skeletal muscle IGF1 and myogenic regulatory factors in spinal cord injured rats. Eur J Appl Physiol. 2010; 109(4): 709-20.doi: 10.1007/s00421-010-1392-z. [DOI:10.1007/s00421-010-1392-z] [PubMed] [Google Scholar]
33. Caldow MK, Thomas EE, Dale MJ, Tomkinson GR, Buckley JD, Cameron-Smith D. Early myogenic responses to acute exercise before and after resistance training in young men. Physiological reports. 2015; 3(9): e12511. doi: 10.14814/phy2.12511. [DOI:10.14814/phy2.12511] [PubMed] [Google Scholar]
34. Nederveen JP, Snijders T, Joanisse S, Wavell CG, Mitchell CJ. Altered muscle satellite cell activation following 16 wk of resistance training in young men. Am J Physiol Regul Integr Comp Physiol. 2017; 312(1): R85-R92.doi: 10.1152/ajpregu.00221.2016. [DOI:10.1152/ajpregu.00221.2016] [PubMed] [Google Scholar]
35. Klimczak A, Kozlowska U, Kurpisz M. Muscle stem/progenitor cells and mesenchymal stem cells of bone marrow origin for skeletal muscle regeneration in muscular dystrophies. Arch Immunol Ther Exp (Warsz). 2018; 66(5): 341-354. doi: 10.1007/s00005-018-0509-7. [DOI:10.1007/s00005-018-0509-7] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal