Volume 13, Issue 6 (Nov-Dec 2019)                   mljgoums 2019, 13(6): 1-10 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Abubakar S D. Characterization of Chromosomal Abnormalities in Cancer by Spectral Karyotyping. mljgoums. 2019; 13 (6) :1-10
URL: http://mlj.goums.ac.ir/article-1-1234-en.html
Ahmadu Bello University, Zaria, Nigeria , dsabubakar@abu.edu.ng
Abstract:   (118 Views)
ABSTRACT
        Spectral karyotyping is a novel method for the simultaneous visualization of the entire chromosomes of an organism by painting the chromosomes using a combination of fluorochromes. This allows improved identification of chromosomal aberrations that cannot be identified by conventional banding methods. Since introduction of cancer as a disease of the genome, researchers have employed various molecular techniques for a better understanding of malignancies. This review discusses the role and contributions of spectral karyotyping in the study and characterization of both solid and hematological malignancies.
        Keywords: Spectral karyotyping; Neoplasms; Chromosomes.
Full-Text [PDF 864 kb]   (48 Downloads)    
Type of Study: Systematic Review | Subject: Pathology
Received: 2019/07/27 | Accepted: 2019/09/4 | Published: 2019/10/30 | ePublished: 2019/10/30

References
1. Harper PS. The discovery of the human chromosome number in Lund, 1955-1956. Hum Genet. 2006; 119(1-2): 226-232. [DOI:10.1007/s00439-005-0121-x]
2. Imataka G, Arisaka O. Chromosome Analysis Using Spectral Karyotyping (SKY). Cell Biochem Biophys. 2012; 62(1): 13-7. doi: 10.1007/s12013-011-9285-2. [DOI:10.1007/s12013-011-9285-2]
3. Lejeune J, Turpin R, Gautier M. Mongolism; a chromosomal disease (trisomy). Bull Acad Natl Med. 1959; 143(11-12): 256-65.
4. Imataka G, Mitsui M, Mitsui N, Hirabayashi H, Yamanouchi H, Eguchi M. Down syndrome with acute epiglottitis. Pediatrics International. 2005; 47: 333-335. [DOI:10.1111/j.1442-200x.2005.02069.x]
5. Edwards JH, Harnden DG, Cameron AH, Crosse VM, Wolff OH. A new trisomic syndrome. Lancet.1960; 11(7128): 787-790. [DOI:10.1016/S0140-6736(60)90675-9]
6. Imataka G, Nitta A, Suzumura H, Watanabe H, Yamanouchi H, Arisaka O. Survival of trisomy 18 cases in Japan. Genetic Counseling. 2007; 18(3): 303-308.
7. Patau K, Smith DW, Therman E, Inhorn SL, Wagner HP. Multiple congenital anomaly caused by an extra autosome. Lancet. 1960; 1(7128): 790-3. [DOI:10.1016/S0140-6736(60)90676-0]
8. de Grouchy J, Turleau C, Leonard C. Study by fluorescence of a trisomy C mosaic, probably 8: 46, XY-47, XY,? 8?. Annales de Genetique.1971; 14(1): 69-72.
9. Iselius L, Lindsten J, Aurias A, Fraccaro M, Bastard C, et al. The 11q;22q translocation: A collaborative study of 20 new cases and analysis of 110 families. Human Genetics. 1983; 64(4): 343-355. [DOI:10.1007/BF00292366]
10. Imataka G, Takaya Y, Hagisawa S, Yamanouchi H, Eguchi M. Trisomy 11/22 diagnosed by spectral karyotyping (SKY). Genetic Counseling. 2004; 15(3): 391-394.
11. Ford CE, Jones KW, Polani PE, De Almeida JC, Briggs JH. A sex-chromosome anomaly in a case of gonadal dysgenesis (Turner's syndrome). Lancet. 1959; 1(7075): 711-713. [DOI:10.1016/S0140-6736(59)91893-8]
12. Tanner JM, Prader A, Habich H, Ferguson-Smith MA. Genes on the Y chromosome influencing rate of maturation in man: Skeletal age studies in children with Klinefelter's (XXY) and Turner's (XO) syndromes. Lancet. 1959; 2(7095): 141-144. [DOI:10.1016/S0140-6736(59)90558-6]
13. Yamanouchi H, Imataka G, Nakagawa E, Nitta A, Suzuki N, Hirao J, et al. An analysis of epilepsy with chromosomal abnormalities. Brain Dev. 2005; 27(5): 370-377. [DOI:10.1016/j.braindev.2004.04.012]
14. Caspersson T, Castleman KR, Lomakka G, Modest EJ, Moller A, Nathan R, et al. Automatic karyotyping of quinacrine mustard stained human chromosomes. Experimental Cell Research. 1971; 67(1): 233-235. [DOI:10.1016/0014-4827(71)90645-8]
15. Yunis JJ, Chandler ME. High-resolution chromosome analysis in clinical medicine. Progress in Clinical Pathology. 1978; 7: 267-288.
16. Trask BJ. Fluorescence in situ hybridization: Applications in cytogenetics and gene mapping. Trends in Genetics. 1991; 7(5): 149-154. [DOI:10.1016/0168-9525(91)90378-4]
17. Kallioniemi A, Kallioniemi OP, Sudar D, Rutovitz D, Gray JW, Waldman F, et al. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992; 258(5083): 818-821. [DOI:10.1126/science.1359641]
18. Schröck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith MA, et al. Multicolor spectral karyotyping of human chromosomes. Science. 1996; 273 (5274): 494-497. [DOI:10.1126/science.273.5274.494]
19. Boveri T. Concerning the origin of malignant tumours by Theodor Boveri. Journal of Cell Science. 2008; 121(Suppl 1): 1-84. doi: 10.1242/jcs.025742. [DOI:10.1242/jcs.025742]
20. Macconaill LE, Garraway LA. Clinical implications of the cancer genome. J Clin Oncol. 2010; 28(35): 5219-28. doi: 10.1200/JCO.2009.27.4944. [DOI:10.1200/JCO.2009.27.4944]
21. Garraway LA, Lander ES. Lessons from the Cancer Genome. Cell. 2013; 153(1): 17-37. doi: 10.1016/j.cell.2013.03.002. [DOI:10.1016/j.cell.2013.03.002]
22. International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature. 2004; 431(7011): 931-945. [DOI:10.1038/nature03001]
23. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2004; 431(7011): 931-45. [DOI:10.1038/nature03001]
24. Samuels Y, Wang Z, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004; 304(5670): 554. [DOI:10.1126/science.1096502]
25. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, et al. EGF receptor gene mutations are common in lung cancers from ''never smokers'' and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004; 101(36): 13306-11. [DOI:10.1073/pnas.0405220101]
26. Hudson TJ, Anderson W, Artez A, Barker AD, Bell C, Bernabe RR, et al. International Cancer Genome Consortium. International network of cancer genome projects. Nature. 2010; 464: 993-998. [DOI:10.1038/nature08987]
27. Garini Y, Macvillez M, du Manoir S, Buckwald RA, Lavi M, Katzir N, et al. Spectral Karyotyping. Bioimaging. 1996; 4: 65-72. https://doi.org/10.1002/1361-6374(199606)4:2<65::AID-BIO4>3.3.CO;2-4 [DOI:10.1002/1361-6374(199606)4:23.3.CO;2-4]
28. Trakhtenbrot L. Spectral Karyotyping. In: Schwab M. (eds) Encyclopaedia of Cancer. Springer, Berlin, Heidelberg. 2011. [DOI:10.1007/978-3-642-16483-5_5433]
29. Macville M, Veldman T, Padilla-Nash H, Wangsa D, O'Brien P, Schröck E, et al. Spectral karyotyping, a 24-colour FISH technique for the identification of chromosomal rearrangements. Histochem Cell Biol. 1997; 108(4-5): 299-305. [DOI:10.1007/s004180050169]
30. Macville M, Schröck E, Padilla-Nash H, Keck C, Ghadimi BM, Zimonjic D, et al. Comprehensive and definitive molecular cytogenetic characterization of HeLa cells by spectral karyotyping. Cancer research. 1999; 59(1): 141-50.
31. Pan Y, Kytölä S, Farnebo F, Wang N, Lui WO, Nupponen N, et al. Characterization of chromosomal abnormalities in prostate cancer cell lines by spectral karyotyping. Cytogenetic and Genome Research. 1999; 87(3-4): 225-32. [DOI:10.1159/000015432]
32. Zhang FF, Murata‐Collins JL, Gaytan P, Forman SJ, Kopecky KJ, Willman CL, et al. Twenty‐four‐color spectral karyotyping reveals chromosome aberrations in cytogenetically normal acute myeloid leukemia. Genes, Chromosomes and Cancer. 2000; 28(3): 318-28. https://doi.org/10.1002/1098-2264(200007)28:3<318::AID-GCC10>3.0.CO;2-M [DOI:10.1002/1098-2264(200007)28:33.0.CO;2-M]
33. Melcher R, Steinlein C, Feichtinger W, Müller CR, Menzel T, Lührs H, et al. Spectral karyotyping of the human colon cancer cell lines SW480 and SW620. Cytogenetic and Genome Research. 2000; 88(1-2): 145-52. [DOI:10.1159/000015508]
34. Van den Bos H. Aneuploidy in the Human Brain and Cancer: Studying Heterogeneity Using Single-cell Sequencing. University of Groningen. 2017;132. (Thesis).
35. Kytölä S, Rummukainen J, Nordgren A, Karhu R, Farnebo F, Isola J, et al. Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping. Genes, Chromosomes and Cancer. 2000; 28(3): 308-317. https://doi.org/10.1002/1098-2264(200007)28:3<308::AID-GCC9>3.0.CO;2-B [DOI:10.1002/1098-2264(200007)28:33.0.CO;2-B]
36. Bayani J, Zielenska M, Marrano P, Ng YK, Taylor MD, Jay V, et al. Molecular cytogenetic analysis of medulloblastomas and supratentorial primitive neuroectodermal tumors by using conventional banding, comparative genomic hybridization, and spectral karyotyping. Journal of neurosurgery. 2000; 93(3): 437-48. [DOI:10.3171/jns.2000.93.3.0437]
37. Nordgren A, Sørensen AG, Tinggaard-Pedersen NI, Blennow EL, Larsson CA, Lagercrantz S. New chromosomal breakpoints in non-Hodgkin's lymphomas revealed by spectral karyotyping and G-banding. Int J Mol Med. 2000; 5(5): 485-92. [DOI:10.3892/ijmm.5.5.485]
38. Adeyinka A, Kytola S, Mertens F, Pandis N, Larsson C. Spectral karyotyping and chromosome banding studies of primary breast carcinomas and their lymph node metastases. Int J Mol Med. 2000; 5(3): 235-40. [DOI:10.3892/ijmm.5.3.235]
39. Fadl‐elmula I, Kytölä S, Pan Y, Lui WO, Derienzo G, Forsberg L, et al. Characterization of chromosomal abnormalities in uroepithelial carcinomas by G‐banding, spectral karyotyping and FISH analysis. Int J Cancer. 2001; 92(6): 824-31. [DOI:10.1002/ijc.1267]
40. Sawyer JR, Lukacs JL, Thomas EL, Swanson CM, Goosen LS, Sammartino G, et al. Multicolour spectral karyotyping identifies new translocations and a recurring pathway for chromosome loss in multiple myeloma. Br J Haematol. 2001; 112(1): 167-74. [DOI:10.1046/j.1365-2141.2001.02546.x]
41. Rummukainen J, Kytölä S, Karhu R, Farnebo F, Larsson C, Isola JJ. Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping. Cancer Genetics. 2001; 126(1): 1-7. [DOI:10.1016/S0165-4608(00)00387-3]
42. Beheshti B, Park PC, Sweet JM, Trachtenberg J, Jewett MA, Squire JA. Evidence of chromosomal instability in prostate cancer determined by spectral karyotyping (SKY) and interphase fish analysis. Neoplasia. 2001; 3(1): 62-9. [DOI:10.1038/sj.neo.7900125]
43. Abdel-Rahman WM, Katsura K, Rens W, Gorman PA, Sheer D, Bicknell D, et al. Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement. Proceedings of the National Academy of Sciences. 2001; 98(5): 2538-43. [DOI:10.1073/pnas.041603298]
44. Sirivatanauksorn V, Sirivatanauksorn Y, Gorman PA, Davidson JM, Sheer D, Moore PS, et al. Non‐random chromosomal rearrangements in pancreatic cancer cell lines identified by spectral karyotyping. Int J Cancer. 2001; 91(3): 350-8. https://doi.org/10.1002/1097-0215(200002)9999:9999<::AID-IJC1049>3.3.CO;2-3 [DOI:10.1002/1097-0215(200002)9999:99993.3.CO;2-3]
45. Harding MA, Arden KC, Gildea JW, Gildea JJ, Perlman EJ, Viars C, et al. Functional genomic comparison of lineage-related human bladder cancer cell lines with differing tumorigenic and metastatic potentials by spectral karyotyping, comparative genomic hybridization, and a novel method of positional expression profiling. Cancer research. 2002; 62(23): 6981-9.
46. Roschke AV, Stover K, Tonon G, Schäffer AA, Kirsch IR. Stable karyotypes in epithelial cancer cell lines despite high rates of ongoing structural and numerical chromosomal instability. Neoplasia. 2002; 4(1): 19-31. [DOI:10.1038/sj.neo.7900197]
47. Mrózek K, Heinonen K, Theil KS, Bloomfield CD. Spectral karyotyping in patients with acute myeloid leukemia and a complex karyotype shows hidden aberrations, including recurrent overrepresentation of 21q, 11q, and 22q. Genes, Chromosomes and Cancer. 2002; 34(2): 137-53. [DOI:10.1002/gcc.10027]
48. Squire JA, Bayani J, Luk C, Unwin L, Tokunaga J, MacMillan C, et al. Molecular cytogenetic analysis of head and neck squamous cell carcinoma: by comparative genomic hybridization, spectral karyotyping, and expression array analysis. Head neck. 2002; 24(9): 874-87. [DOI:10.1002/hed.10122]
49. Rao PH, Harris CP, Yan Lu X, Li N, Mok SC, Lau CC. Multicolor spectral karyotyping of serous ovarian adenocarcinoma. Genes, Chromosomes and Cancer. 2002; 33(2): 123-32. [DOI:10.1002/gcc.1221]
50. Wong N, Hui AB, Fan B, Lo KW, Pang E, Leung SF, et al. Molecular cytogenetic characterization of nasopharyngeal carcinoma cell lines and xenografts by comparative genomic hybridization and spectral karyotyping. Cancer genetics and cytogenetics. 2003; 140(2): 124-32. [DOI:10.1016/S0165-4608(02)00657-X]
51. Bayani J, Zielenska M, Pandita A, Al‐Romaih K, Karaskova J, Harrison K, et al. Spectral karyotyping identifies recurrent complex rearrangements of chromosomes 8, 17, and 20 in osteosarcomas. Genes, Chromosomes and Cancer. 2003; 36(1): 7-16. [DOI:10.1002/gcc.10132]
52. Harris CP, Lu XY, Narayan G, Singh B, Murty VV, Rao PH. Comprehensive molecular cytogenetic characterization of cervical cancer cell lines. Genes, Chromosomes and Cancer. 2003; 36(3): 233-41. [DOI:10.1002/gcc.10158]
53. Grigorova M, Lyman RC, Caldas C, Edwards PA. Chromosome abnormalities in 10 lung cancer cell lines of the NCI-H series analyzed with spectral karyotyping. Cancer Genetics. 2005; 162(1): 1-9. [DOI:10.1016/j.cancergencyto.2005.03.007]
54. Prowald A, Wemmert S, Biehl C, Storck S, Martin T, Henn W, et al. Interstitial loss and gain of sequences on chromosome 22 in meningiomas with normal karyotype. Int J Oncol. 2005; 26(2): 385-93. [DOI:10.3892/ijo.26.2.385]
55. Yamashita Y, Nishida K, Okuda T, Nomura K, Matsumoto Y, Mitsufuji S, et al. Recurrent chromosomal rearrangements at bands 8q24 and 11q13 in gastric cancer as detected by multicolor spectral karyotyping. World journal of gastroenterology: WJG. 2005; 11(33): 5129.
56. Karpova MB, Schoumans J, Blennow E, Ernberg I, Henter JI, Smirnov AF, et al. Combined spectral karyotyping, comparative genomic hybridization, and in vitro apoptyping of a panel of Burkitt's lymphoma-derived B cell lines reveals an unexpected complexity of chromosomal aberrations and a recurrence of specific abnormalities in chemoresistant cell lines. Int J Oncol. 2006; 28(3): 605-17. [DOI:10.3892/ijo.28.3.605]
57. Uchida K, Oga A, Okafuji M, Mihara M, Kawauchi S, Furuya T, et al. Molecular cytogenetic analysis of oral squamous cell carcinomas by comparative genomic hybridization, spectral karyotyping, and fluorescence in situ hybridization. Cancer Genet Cytogenet. 2006; 167(2): 109-16. [DOI:10.1016/j.cancergencyto.2006.01.007]
58. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Current Biology. 2007; 17(5): 431-7. [DOI:10.1016/j.cub.2007.01.049]
59. Melcher R, Al-Taie O, Kudlich T, Hartmann E, Maisch S, Steinlein C, et al. SNP-Array genotyping and spectral karyotyping reveal uniparental disomy as early mutational event in MSS-and MSI-colorectal cancer cell lines. Cytogenet Genome Res. 2007; 118(2-4):214-21. [DOI:10.1159/000108303]
60. Varella-Garcia M, Chen L, Powell RL, Hirsch FR, Kennedy TC, Keith R, et al. Spectral karyotyping detects chromosome damage in bronchial cells of smokers and patients with cancer. Am J Respir Crit Care Med. 2007; 176(5): 505-12. [DOI:10.1164/rccm.200609-1329OC]
61. Salido M, Arriola E, Carracedo A, Cañadas I, Rovira A, Espinet B, et al. Cytogenetic characterization of NCI-H69 and NCI-H69AR small cell lung cancer cell lines by spectral karyotyping. Cancer Genetics. 2009; 191(2): 97-101. doi: 10.1016/j.cancergencyto.2009.01.016. [DOI:10.1016/j.cancergencyto.2009.01.016]
62. Stephens PJ, Greenman CD, Fu B, Yang F, Bignell GR, Mudie LJ, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011; 144(1): 27-40. doi: 10.1016/j.cell.2010.11.055. [DOI:10.1016/j.cell.2010.11.055]
63. Koch A, Hatina J, Rieder H, Seifert HH, Huckenbeck W, Jankowiak F, et al. Discovery of TP53 splice variants in two novel papillary urothelial cancer cell lines. Cellular Oncology. 2012; 35(4):243-57. doi: 10.1007/s13402-012-0082-8. [DOI:10.1007/s13402-012-0082-8]
64. Ling H, Spizzo R, Atlasi Y, Nicoloso M, Shimizu M, Redis RS, et al. CCAT2, a novel noncoding RNA mapping to 8q24, underlies metastatic progression and chromosomal instability in colon cancer. Genome Res. 2013; 23(9): 1446-61. doi: 10.1101/gr.152942.112. [DOI:10.1101/gr.152942.112]
65. Das K, Gunasegaran B, Tan IB, Deng N, Lim KH, Tan P. Mutually exclusive FGFR2, HER2, and KRAS gene amplifications in gastric cancer revealed by multicolour FISH. Cancer letters. 2014; 353(2):167-75. doi: 10.1016/j.canlet.2014.07.021. [DOI:10.1016/j.canlet.2014.07.021]
66. Baykara O, Bakir B, Buyru N, Kaynak K, Dalay N. Amplification of chromosome 8 genes in lung cancer. J Cancer. 2015; 6(3): 270-5. doi: 10.7150/jca.10638. [DOI:10.7150/jca.10638]
67. Sorber R, Teper Y, Abisoye-Ogunniyan A, Waterfall JJ, Davis S, Killian JK, et al. Whole genome sequencing of newly established pancreatic cancer lines identifies novel somatic mutation (c. 2587G> A) in axon guidance receptor plexin A1 as enhancer of proliferation and invasion. PLoS One. 2016; 11(3): e0149833. doi: 10.1371/journal.pone.0149833. [DOI:10.1371/journal.pone.0149833]
68. Singchat W, Hitakomate E, Rerkarmnuaychoke B, Suntronpong A, Fu B, Bodhisuwan W, et al. Genomic alteration in head and neck squamous cell carcinoma (HNSCC) cell lines inferred from karyotyping, molecular cytogenetics, and Array comparative genomic hybridization. PLoS One. 2016; 11(8): e0160901. doi: 10.1371/journal.pone.0160901. [DOI:10.1371/journal.pone.0160901]
69. Sun Y, Ji P, Chen T, Zhou X, Yang D, Guo Y, et al. MIIP haploinsufficiency induces chromosomal instability and promotes tumour progression in colorectal cancer. J Pathol. 2017; 241(1): 67-79. doi: 10.1002/path.4823. [DOI:10.1002/path.4823]
70. El-Zein RA, Abdel-Rahman S, Santee KJ, Yu R, Shete S. Identification of small and non-small cell lung cancer markers in peripheral blood using cytokinesis-blocked micronucleus and spectral karyotyping assays. Cytogenet Genome Res. 2017; 152(3): 122-131. doi: 10.1159/000479809. [DOI:10.1159/000479809]
71. Wangsa D, Braun R, Schiefer M, Gertz EM, Bronder D, Quintanilla I, et al. The evolution of single cell-derived colorectal cancer cell lines is dominated by the continued selection of tumor-specific genomic imbalances, despite random chromosomal instability. Carcinogenesis. 2018; doi: 10.1093/carcin/bgy068. [DOI:10.1093/carcin/bgy068]
72. Zhou B, Ho SS, Greer SU, Spies N, Bell JM, Zhang X, et al. Haplotype-resolved and integrated genome analysis of the cancer cell line HepG2. Nucleic Acids Res. 2019; 47(8): 3846-3861. doi: 10.1093/nar/gkz169. [DOI:10.1093/nar/gkz169]
73. Mrózek K, Eisfeld AK, Kohlschmidt J, Carroll AJ, Walker CJ, Nicolet D, et al. Complex karyotype in de novo acute myeloid leukemia: typical and atypical subtypes differ molecularly and clinically. Leukemia. 2019; 33(7): 1620-1634. doi: 10.1038/s41375-019-0390-3. [DOI:10.1038/s41375-019-0390-3]
74. Kuźniacka A, Mertens F, Strömbeck B, Wiegant J, Mandahl N. Combined binary ratio labeling fluorescence in situ hybridization analysis of chordoma. Cancer Genet. Cytogenet. 2004; 151(2): 178-81. [DOI:10.1016/j.cancergencyto.2003.09.015]
75. Szuhai K, Tanke HJ. COBRA : combined binary ratio labeling of nucleic- acid probes for multi-color fluorescence in situ hybridization karyotyping. Nat. Protoc. 2006; 1(1): 264-275. [DOI:10.1038/nprot.2006.41]
76. Vorsanova SG, Yurov YB Iourov IY. Human interphase chromosomes: a review of available molecular cytogenetic technologies. Mol Cytogenet. 2010; 3: 1. doi: 10.1186/1755-8166-3-1. [DOI:10.1186/1755-8166-3-1]
77. Kakazu N, Abe T. Multicolor banding technique, spectral color banding (SCAN): new development and applications. Cytogenetic and genome research. 2006; 114(3-4): 250-6. [DOI:10.1159/000094209]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal