Volume 14, Issue 3 (May-Jun 2020)                   mljgoums 2020, 14(3): 13-18 | Back to browse issues page

XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

sabbaghzadeh R. Effect of Different Concentrations of Lead Nitrate on Biochemical Parameters of Alfalfa. mljgoums. 2020; 14 (3) :13-18
URL: http://mlj.goums.ac.ir/article-1-1184-en.html
1Department of Biology, School of Sciences, Hakim Sabzevari University, Sabzevar, Iran , r.sabbaghzadeh@hsu.ac.ir
Abstract:   (518 Views)
Background and objectives: Polyphenols can exert free radical scavenging effects by naturalizing dangerous reactive oxidants. Formation of reactive oxygen species can cause oxidative damage to human cells, leading to various diseases such as cancer, cardiovascular disease, osteoporosis and degenerative diseases. In this study, we investigated effect of treatment with various concentrations of lead (II) nitrate, a toxic and an oxidizing agent, on growth and biochemical parameters of alfalfa (Medicago sativa L.).
Methods: Total phenol content was estimated by the Folin-Ciocalteu method. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) stable free radical was used for assessment of free radical-scavenging activity. Changes in the activity of catalase and peroxidase as well as in the level of proteins, phenol content and malondialdehyde (as marker of lipid peroxidation) were investigated following treatment with different concentrations (0, 8, 12 and 16 mg/l) of lead nitrate for 21 days. All experiments were done in triplicate. Butylated hydroxytoluene and quercetin were used as standard controls.
Results: Treatment with lead significantly altered the level of total phenolic content, proteins, malondialdehyde and the activity of catalase and peroxidase (P<0.05).
Conclusion: Our results indicate that lead-contaminated soil can significantly alter biochemical and growth parameters of alfalfa.

 
Full-Text [PDF 698 kb]   (60 Downloads)    
Type of Study: Original Paper | Subject: Biochemistry
Received: 2019/01/30 | Accepted: 2019/06/24 | Published: 2020/04/30 | ePublished: 2020/04/30

References
1. Prasad S, Gupta SC, Tyagi AK. Reactive oxygen species (ROS) and cancer: Role of antioxidative nutraceuticals. Cancer Lett. 2017; 387: 95-105. doi: 10.1016/j.canlet.2016.03.042. [DOI:10.1016/j.canlet.2016.03.042] [PubMed] [Google Scholar]
2. Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J, et al. Mitochondria and mitochondrial ROS in cancer: novel targets for anticancer therapy. J Cell Physiol. 2016; 231(12): 2570-81. doi: 10.1002/jcp.25349. [DOI:10.1002/jcp.25349] [PubMed] [Google Scholar]
3. Chio IIC, Tuveson DA. ROS in Cancer: The Burning Question. Trends Mol Med. 2017 May;23(5):411-429. doi: 10.1016/j.molmed.2017.03.004. [DOI:10.1016/j.molmed.2017.03.004] [PubMed] [Google Scholar]
4. Di Minno A, Turnu L, Porro B, Squellerio I, Cavalca V, Tremoli E, et al. 8-hydroxy-2-deoxyguanosine levels and cardiovascular disease: a systematic review and meta-analysis of the literature. Antioxidants & redox signaling. 2016; 24(10): 548-55. doi: 10.1089/ars.2015.6508. [DOI:10.1089/ars.2015.6508] [PubMed] [Google Scholar]
5. Abid MR, Sellke FW. Subcellular ROS Signaling in Cardiovascular Disease. Free Radicals and Diseases: InTech. 2016; DOI: 10.5772/64570. [DOI:10.5772/64570] [Google Scholar]
6. Du Y, Li H, Chen B, Lai H, Li X, Chen T. Selenadiazole derivatives antagonize glucocorticoid-induced osteoblasts cells apoptosis by blocking ROS-mediated signaling, a new anti-osteoporosis strategy. RSC Advances. 2017; 7(47): 29656-64. [DOI:10.1039/C7RA01306J] [Google Scholar]
7. Kim H, Lee YD, Kim HJ, Lee ZH, Kim HH. SOD2 and Sirt3 Control Osteoclastogenesis by Regulating Mitochondrial ROS. J Bone Miner Res. 2017; 32(2): 397-406. doi: 10.1002/jbmr.2974. [DOI:10.1002/jbmr.2974] [PubMed] [Google Scholar]
8. Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, et al. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process. International wound journal. 2017; 14(1): 89-96. [DOI:10.1111/iwj.12557] [PubMed] [Google Scholar]
9. Akhtar MJ, Ahamed M, Alhadlaq HA. Mechanism of ROS scavenging and antioxidant signalling by redox metallic and fullerene nanomaterials: Potential implications in ROS associated degenerative disorders. Biochim Biophys Acta Gen Subj. 2017; 1861(4): 802-813. doi: 10.1016/j.bbagen.2017.01.018. [DOI:10.1016/j.bbagen.2017.01.018] [PubMed] [Google Scholar]
10. Velioglu Y, Mazza G, Gao L, Oomah B. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of agricultural and food chemistry. 1998; 46(10): 4113-7. [DOI:10.1021/jf9801973] [Google Scholar]
11. Hirose M, Takesada Y, Tanaka H, Tamano S, Kato T, Shirai T. Carcinogenicity of antioxidants BHA, caffeic acid, sesamol, 4-methoxyphenol and catechol at low doses, either alone or in combination, and modulation of their effects in a rat medium-term multi-organ carcinogenesis model. Carcinogenesis. 1998; 19(1): 207-12. [DOI:10.1093/carcin/19.1.207] [PubMed] [Google Scholar]
12. Branen A. Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J Am Oil Chem Soc. 1975; 52(2): 59-63. [DOI:10.1007/BF02901825] [PubMed] [Google Scholar]
13. Williams G, Iatropoulos M, Whysner J. Safety assessment of butylated hydroxyanisole and butylated hydroxytoluene as antioxidant food additives. Food Chem Toxicol. 1999; 37(9-10):1027-38. [DOI:10.1016/S0278-6915(99)00085-X] [PubMed] [Google Scholar]
14. Chan K, CKER E, Means W. Extraction and activity of carnosine, a naturally occurring antioxidant in beef muscle. Journal of Food Science. 1993; 58(1): 1-4. [DOI:10.1111/j.1365-2621.1993.tb03199.x] [Google Scholar]
15. Goławska S, Łukasik I, Goławski A, Kapusta I, Janda B. Alfalfa (Medicago sativa L.) apigenin glycosides and their effect on the pea aphid (Acyrthosiphon pisum). Pol J Environ Stud. 2010; 19: 913-20. [Google Scholar]
16. Chaudhry N. Effect of growth hormones ie, IAA, kinetin and heavy metal ie, lead nitrate on the internal morphology of leaf of Phaseolus vulgaris L. Pakistan Journal of Biological Sciences (Pakistan). 2003; 6(2): 157-163. [DOI:10.3923/pjbs.2003.157.163] [Google Scholar]
17. Zhang H, Tsao R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Current Opinion in Food Science. 2016; 8: 33-42. [DOI:10.1016/j.cofs.2016.02.002] [Google Scholar]
18. Russo GL, Tedesco I, Spagnuolo C, Russo M, editors. Antioxidant polyphenols in cancer treatment: friend, foe or foil? Semin Cancer Biol. 2017; 46:1-13. doi: 10.1016/j.semcancer.2017.05.005. [DOI:10.1016/j.semcancer.2017.05.005] [PubMed] [Google Scholar]
19. Silberstein T, Har-Vardi I, Harlev A, Friger M, Hamou B, Barac T, et al. Antioxidants and polyphenols: Concentrations and relation to male infertility and treatment success. Oxid Med Cell Longev. 2016; 2016: 9140925. doi: 10.1155/2016/9140925. [DOI:10.1155/2016/9140925] [PubMed] [Google Scholar]
20. Kansal L, Sharma V, Sharma A, Lodi S, Sharma S. Protective role of coriandrum sativum (coriander) extracts against lead nitrate induced oxidative stress and tissue damage in the liver and kidney in male mice. International Journal of Applied Biology and Pharmaceutical Technology. 2011; 2(3): 65-83. [Google Scholar]
21. Friedland AJ. The movement of metals through soils and ecosystems. Heavy metal tolerance in plants: Evolutionary aspects. 1990; 7-19. [Google Scholar]
22. Rogers RD, Bond AH, Roden DM. Structural chemistry of poly (ethylene glycol) complexes of lead (II) nitrate and lead (II) bromide. Inorganic chemistry. 1996; 35(24): 6964-73. [DOI:10.1021/ic960587b] [PubMed] [Google Scholar]
23. Young JA. Lead (II) Nitrate. J Chem Educ. 2004; 81(12): 1709. [DOI:10.1021/ed081p1709] [Google Scholar]
24. Chhetri D, Modak S, Ahmed S. Physiological and Biochemical Responses to Two Rice Bean (Vigna umbellata T.) Cultivars to Heavy Metal Stress. Environment and Ecology. 2004; 22 (Spl. I): 27-33. [Google Scholar]
25. Blainski A, Lopes GC, de Mello JC. Application and Analysis of the Folin Ciocalteu Method for the Determination of the Total Phenolic Content from Limonium Brasiliense L. Molecules. 2013; 18(6): 6852-65. doi: 10.3390/molecules18066852. [DOI:10.3390/molecules18066852] [PubMed] [Google Scholar]
26. Olugbami JO, Gbadegesin MA, Odunola OA. Free radical scavenging and antioxidant properties of ethanol extract of Terminalia glaucescens. Pharmacognosy Res. 2015; 7(1): 49-56. doi: 10.4103/0974-8490.147200. [DOI:10.4103/0974-8490.147200] [Google Scholar]
27. Li X, Wu X, Huang L. Correlation between Antioxidant Activities and Phenolic Contents of Radix Angelicae Sinensis (Danggui) . Molecules. 2009; 14(12): 5349-61. doi: 10.3390/molecules14125349. [DOI:10.3390/molecules14125349] [PubMed] [Google Scholar]
28. Bradford MM. A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding . Analytical Biochemistry. 1976; 72 (1-2): 248-254. [DOI:10.1016/0003-2697(76)90527-3] [PubMed] [Google Scholar]
29. Singleton VL, Orthofer R, Lamuela R, Rosa M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology. 1999; 299: 152-178. [DOI:10.1016/S0076-6879(99)99017-1] [Google Scholar]
30. Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999; 207(4): 604-611. DOI: 10.1007/s004250050524. [DOI:10.1007/s004250050524] [PubMed] [Google Scholar]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


© 2007 All Rights Reserved | Medical Laboratory Journal