Volume 13, Issue 6 (Nov-Dec 2019)                   mljgoums 2019, 13(6): 17-22 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Yamini S, Eftekhari Z, Mokhber Dezfouli M R, Beikzadeh B, Mehrbod P. Exogenous Lung Surfactant Decreases Interleukin-8 Production and Increases Leukocytes Population and Total Immunoglobulins in Rabbits . mljgoums. 2019; 13 (6) :17-22
URL: http://mlj.goums.ac.ir/article-1-1174-en.html
1- 1Departement of cell biology and molecular genetics tendency,Islamic Azad University, Tehran Medical Science Branch, Tehran, Iran
2- Research & Production Complex, Pasteur Institute of Iran, Tehran , eftekharivet@gmail.com
3- 3Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran-Iran
4- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran
5- Influenza and Other Respiratory Viruses Dept, Pasteur Institute of Iran, Tehran-Iran
Abstract:   (1590 Views)
           Background and Objectives: Exogenous lung surfactant (ELS) obtained from extraction of bronchoalveolar lavage fluid, is prescribed in some respiratory disorders, which could affect production of lung-related cytokines. Interleukin-8 (IL-8) is a major cytokine that could affect severity of lung diseases. In this study, we investigate the possible impact of ELS on IL-8 expression, hematological parameters and IgG and IgM levels in rabbits.
           Methods: ELS solution obtained from fresh calf’s lung bronchoalveolar lavage was infused into the lungs of five rabbits via tracheal tube. Blood samples were collected before and after ELS treatment for 30 days.
           Results: Serum IL-8 levels decreased over time following ELS administration. IL-8 expression also decreased after exposure to ELS, but leukocytes count increased significantly 24, 48 and 72 hours after ELS therapy compared to baseline values (P<0.05). IgM level increased significantly 72 hours after the ELS therapy and returned to normal range at the end of study.
           Conclusion: Our findings suggest that ELS could down-regulate IL-8 expression in mononuclear cells while increasing leukocytes population and total immunoglobulins level, which can trigger immune responses without lung damage. However, further studies should be performed to confirm the regulatory effects of ELS on inflammatory responses in lung diseases.
           Keywords: Exogenous lung surfactant, IL-8, Immunoglobulins.
Full-Text [PDF 781 kb]   (214 Downloads)    
Type of Study: Original Paper | Subject: Others
Received: 2019/01/11 | Accepted: 2019/07/17 | Published: 2019/10/30 | ePublished: 2019/10/30

1. Notter RH, Wang Z, Egan E, Holm B. Component-specific surface and physiological activity in bovine-derived lung surfactants. Chemistry and Physics of Lipids. 2002; 114(1): 21-34. [DOI:10.1016/S0009-3084(01)00197-9]
2. Bissinger RL, Carlson CA. Surfactant. Newborn and Infant Nursing Reviews. 2006;6(2):87-93. [DOI:10.1053/j.nainr.2006.03.007]
3. Banchereau J. Cells and Cytokines in Lung Inflammation. Mediators Inflamm. 1994; 3(1): 61-99. [DOI:10.1155/S0962935194000116]
4. Aliverdilo M MDM, Eftekhari Z, Paryan Mahdi. Evaluation of Lung Surfactant on Gene Expression of MCP-1 in Peripheral Blood Mononuclear Cells in Rabbit Model. Journal Of Animal Biology 2017;9 (4):67-77.
5. Frerking I, Günther A, Seeger W, Pison U. Pulmonary surfactant: functions, abnormalities and therapeutic options. Intensive care med. 2001; 27(11): 1699-717. [DOI:10.1007/s00134-001-1121-5]
6. Alcorn JL. Innate Immunity and Pulmonary Inflammation: A Balance Between Protection and Disease. Translational Inflammation: Elsevier; 2019;153-75. [DOI:10.1016/B978-0-12-813832-8.00008-X]
7. Mokhber Dezfouli MR, Eftekhari Z, Heidari Sureshjani M, Dehghan MM, Dousti M. The hydrophilic proteins of lung surfactant as a prognostic marker in experimental pneumonia. Iranian Journal of Veterinary Medicine. 2017; 11(1): 1-8.
8. Goodyear A, Jones A, Troyer R, Bielefeldt-Ohmann H, Dow SJTjoi. Critical protective role for MCP-1 in pneumonic Burkholderia mallei infection. J Immunol. 2010; 184(3): 1445-54. doi: 10.4049/jimmunol.0900411. [DOI:10.4049/jimmunol.0900411]
9. Brogden KAJAvL. Changes in pulmonary surfactant during bacterial pneumonia. Antonie Van Leeuwenhoek. 1991; 59(4): 215-23. [DOI:10.1007/BF00583673]
10. Chida S, Phelps DS, Soll RF, Taeusch HWJP. Surfactant proteins and anti-surfactant antibodies in sera from infants with respiratory distress syndrome with and without surfactant treatment. Pediatrics. 1991; 88(1): 84-9.
11. Meloni F, Alberti A, Bulgheroni A, Lupi A, Paschetto E, Bianco AM, et al. Surfactant apoprotein A modulates interleukin-8 and monocyte chemotactic peptide-1 production. Eur Respir J. 2002; 19(6): 1128-35. [DOI:10.1183/09031936.02.00211102]
12. Tanaka N, Watanabe J, Kitamura T, Yamada Y, Kanegasaki S, Nakata KJFl. Lungs of patients with idiopathic pulmonary alveolar proteinosis express a factor which neutralizes granulocyte‐macrophage colony stimulating factor. FEBS Lett. 1999; 442(2-3): 246-50.. [DOI:10.1016/S0014-5793(98)01668-8]
13. Zhang L, Cao H-Y, Zhao S, Yuan L-J, Han D, Jiang H, et al. Effect of exogenous pulmonary surfactants on mortality rate in neonatal respiratory distress syndrome: a network meta-analysis of randomized controlled trials. Pulm Pharmacol Ther. 2015; 34: 46-54. doi: 10.1016/j.pupt.2015.08.005. [DOI:10.1016/j.pupt.2015.08.005]
14. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959; 37(8): 911-7. [DOI:10.1139/o59-099]
15. Molina E, González‐Redondo P, Moreno‐Rojas R, Montero‐Quintero K, Chirinos‐Quintero N, Sánchez‐Urdaneta AJJoap, et al. Evaluation of haematological, serum biochemical and histopathological parameters of growing rabbits fed Amaranthus dubius. J Anim Physiol Anim Nutr (Berl). 2018 ; 102(2): e525-e533. doi: 10.1111/jpn.12791. [DOI:10.1111/jpn.12791]
16. Bush B. Manual de laboratorio veterinario de análisis clínico: Acribia. 1982; 468.
17. Ramos‐Payán R, Aguilar‐Medina M, Estrada‐Parra S, González‐y‐Merchand J, Favila‐Castillo L, Monroy‐Ostria A, et al. Quantification of Cytokine Gene Expression Using an Economical Real‐Time Polymerase Chain Reaction Method Based on SYBR® Green I. Scand J Immunol. 2003; 57(5): 439-45. [DOI:10.1046/j.1365-3083.2003.01250.x]
18. Geertsma M, Teeuw W, Nibbering P, Van Furth RJI. Pulmonary surfactant inhibits activation of human monocytes by recombinant interferon-gamma. Immunology. 1994; 82(3): 450-6.
19. Amigoni A, Pettenazzo A, Stritoni V, Circelli MJCdi. Surfactants in acute respiratory distress syndrome in infants and children: past, present and future. Clin Drug Investig. 2017; 37(8): 729-736. doi: 10.1007/s40261-017-0532-1. [DOI:10.1007/s40261-017-0532-1]
20. Mikolka P, Kopincova J, Kosutova P, Kolomaznik M, Calkovska A, Mokra DJElr. Anti-IL-8 antibody potentiates the effect of exogenous surfactant in respiratory failure caused by meconium aspiration. Exp Lung Res. 2018; 44(1): 40-50. doi: 10.1080/01902148.2017.1420272. [DOI:10.1080/01902148.2017.1420272]
21. Abate W, Alghaithy AA, Parton J, Jones KP, Jackson SKJJolr. Surfactant lipids regulate LPS-induced interleukin-8 production in A549 lung epithelial cells by inhibiting translocation of TLR4 into lipid raft domains. J Lipid Res. 2010; 51(2): 334-44. doi: 10.1194/jlr.M000513. [DOI:10.1194/jlr.M000513]
22. Toews G. Cytokines and the lung. European Respiratory Journal. 2001; 18(34 suppl): 3s-17s. [DOI:10.1183/09031936.01.00266001]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2007 All Rights Reserved | Medical Laboratory Journal