Volume 13, Issue 1 (Jan-Feb 2019)                   mljgoums 2019, 13(1): 21-27 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mohadjerani M, Damanjany M. Protective Effect of Ilex spinigera and Gleditsia caspica Extracts against Drug-Induced Hemolysis in Glucose-6-phosphate dehydrogenase-deficient Patients. mljgoums. 2019; 13 (1) :21-27
URL: http://mlj.goums.ac.ir/article-1-1155-en.html
1- Department of Molecular and Cell Biology, Faculty of Basic Sciences, University of Mazandaran, Babolsar, Iran
Abstract:   (942 Views)
           Background and Objectives: Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common X-linked disorder of human erythrocytes in which cells are susceptible towards hemolytic changes and could be destroyed by peroxides. Extracts of Ilex spinigera and Gleditsia caspica leaves have excellent free radical scavenging activity. We investigated the protective effects of these extracts against hemolysis induced by some drugs in G6PD-deficient erythrocytes.
           Methods: Blood samples were collected from males with and without G6PD deficiency. Hemolysis induced by aspirin, phenylhydrazine hydrochloride and phenacetin was assessed in the presence and absence of the extracts. The amount of released hemoglobin was determined by reading absorbance at 540 nm.
           Results: The methanol extract of G. caspica had significant protective effects against phenacetin-induced hemolysis in G6PD-deficient human erythrocytes (P<0.05). However, the I. spinigera extract had no significant anti-hemolytic effects on these cells.
           Conclusion: Our findings suggest that the extract of G. caspica could be a potential drug with antioxidant and anti-hemolytic properties for patients with G6PD deficiency.
           Keywords: Antihemolytic activity, Medicinal plant, G6PD deficiency, Gleditsia caspica, Ilex spinigera.
Full-Text [PDF 682 kb]   (167 Downloads)    
Type of Study: Original Paper |
Received: 2018/12/15 | Accepted: 2018/12/15 | Published: 2018/12/15 | ePublished: 2018/12/15

1. Aletayeb SM, Chomeili B, Taheri M, Kajbaf TZ, Hakimzadeh M, Aminzadeh M, Moghadam MS, Maleki S. The high incidence of acute hemolysis due to favism in Ahvaz, Iran—clinical features and laboratory findings. Asian Pacific Journal of Tropical Medicine. 2010; 3(5): 399-401. [DOI:10.1016/S1995-7645(10)60097-1]
2. Yang Y, Li Z, Nan P, Zhang X. Drug-induced glucose-6-phosphate dehydrogenase deficiency-related hemolysis risk assessment. Computational biology and chemistry. 2011; 35(3): 189-92. [DOI:10.1016/j.compbiolchem.2011.04.010]
3. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology. 2006; 141(2): 312-22. [DOI:10.1104/pp.106.077073]
4. Dehghanifard A, Mortazavi Y, Saki N, Farshdusti-Hagh M. Molecular aspects of glucose-6-phosphate dehydrogenase deficiency in Iran. Zahedan Journal of Research in Medical Sciences. 2012; 14(7): 1-7.
5. Lee J, Im Kim T, Kang JM, Jun H, Lê H G, Thái TL, Na B K. Prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency among malaria patients in Upper Myanmar. BMC infectious diseases. 2018; 18(1):131. doi: 10.1186/s12879-018-3031-y. [DOI:10.1186/s12879-018-3031-y]
6. Georgakouli K, Deli CK, Zalavras A, Fatouros IG, Kouretas D, Koutedakis Y, et al. α-Lipoic acid supplementation up-regulates antioxidant capacity in adults with G6PD deficiency. Food and chemical toxicology. 2013; 61: 69-73. [DOI:10.1016/j.fct.2013.01.055]
7. Beutler E. Glucose-6-phosphate dehydrogenase deficiency: a historical perspective. Blood. 2008; 111(1): 16-24. [DOI:10.1182/blood-2007-04-077412]
8. Kumar S, Kumar D, SAROHA K, Singh N, Vashishta B. Antioxidant and free radical scavenging potential of Citrullus colocynthis (L.) Schrad. methanolic fruit extract. Acta Pharmaceutica. 2008; 58(2): 215-20. doi: 10.2478/v10007-008-0008-1. [DOI:10.2478/v10007-008-0008-1]
9. Rechinger KH. Aquifoliaceae in KH Rechinger. Flora Iranica. Vol 25, Akademische Druck. Verlagsanstalt. Graz. 1977.
10. Mohadjerani M, Damanjany M. Inhibition of Hemolysis of Red Blood Cells by Citrullus colocynthis, Ilex spinigera and Gleditsia caspica Extracts. Journal of Medicinal Plants. 2015; 14(54): 134-45.
11. Mohadjerani M, Vosoghi Roodgar M. In-vitro evaluation of protective effects on DNA damage and antioxidative activities of Ilex Spinigera Loes. extracts. Iranian Journal of Pharmaceutical Research. 2016; 15(1): 283-292.
12. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture. 1965; 16(3): 144-58.
13. Marinova D, Ribarova F, Atanassova M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. Journal of the university of chemical technology and metallurgy. 2005; 40(3): 255-60.
14. Beutler E, Mitchell M. New rapid method for the estimation of red cell galactose-1-phosphate uridyl transferase activity. The Journal of laboratory and clinical medicine. 1968; 72(3): 527-32.
15. Sharma SC, Sharma S, Gulati OP. Pycnogenol prevents haemolytic injury in G6PD deficient human erythrocytes. Phytotherapy Research. 2003; 17(6): 671-674. [DOI:10.1002/ptr.1334]
16. Umar MI, Asmawi MZ, Sadikun A, Abdul Majid AMS, Atangwho IJ, Khadeer Ahamed MB , et al. Multi-constituent synergism is responsible for anti-inflammatory effect of Azadirachta indica leaf extract. Pharmaceutical Biology. 2014; 52(11): 1411-1422. [DOI:10.3109/13880209.2014.895017]
17. Beutler E, Lisker R, Kuhl W. Molecular biology of G 6 PD variants. Biomedica biochimica acta. 1990; 49(2-3): S236-41.
18. Butnariu M, Samfira I. Free radicals and oxidative stress. J Bioequiv Availab. 2012; 4: 0975-851. [DOI:10.4172/jbb.10000e13]
19. De Leeuw NK, Shapiro L, Lowenstein L. Drug-induced hemolytic anemia. Annals of internal medicine. 1963 Apr 1;58(4):592-607. [DOI:10.7326/0003-4819-58-4-592]
20. Shahidi NT, Westring DW. Acetylsalicylic acid-induced hemolysis and its mechanism. The Journal of clinical investigation. 1970; 49(7): 1334-40. [DOI:10.1172/JCI106349]
21. Welt SI, Jackson EH, Kirkman HN, Parker JC. The effects of certain drugs on the hexose monophosphate shunt of human red cells. Ann N Y Acad Sci. 1971; 179(1): 625-35. [DOI:10.1111/j.1749-6632.1971.tb46938.x]
22. Mohler DN, Williams WJ. The effect of phenylhydrazine on the adenosine triphosphate content of normal and glucose-6-phosphate dehydrogenase-deficient human blood. J Clin Invest. 1961; 40(9): 1735-1742. [DOI:10.1172/JCI104396]
23. Millar J, Péloquin R, de Leeuw NK. Phenacetin-induced hemolytic anemia. Can Med Assoc J. 1972; 106(7): 770-775.
24. Chiu D. Peroxidative reactions in red cell biology. Free radicals in biology. 1982; 5: 115-60. [DOI:10.1016/B978-0-12-566505-6.50012-0]
25. Brzezińska-Ślebodzińska E. Erythrocyte osmotic fragility test as the measure of defence against free radicals in rabbits of different age. Acta Veterinaria Hungarica. 2001; 49(4): 413-9. [DOI:10.1556/004.49.2001.4.5]
26. Miki M, Tamai H, Mino M, Yamamoto Y, Niki E. Free-radical chain oxidation of rat red blood cells by molecular oxygen and its inhibition by α-tocopherol. Arch Biochem Biophys. 1987; 258(2): 373-80. [DOI:10.1016/0003-9861(87)90358-4]
27. Lotito SB, Fraga CG. (+)-Catechin prevents human plasma oxidation. Free Radic Biol Med. 1998; 24(3): 435-41. [DOI:10.1016/S0891-5849(97)00276-1]
28. Hoffman JF. On red blood cells, hemolysis and resealed ghosts. Adv Exp Med Biol. 1992; 326: 1-15. [DOI:10.1007/978-1-4615-3030-5_1]
29. (29) Knopik-Skrocka AG, Bielawski J. The mechanism of the hemolytic activity of polyene antibiotics. Cell Mol Biol Lett. 2002; 7(1): 31-48.

Add your comments about this article : Your username or Email:

© 2007 All Rights Reserved | Medical Laboratory Journal