Volume 13, Issue 5 (Sep-Oct 2019)                   mljgoums 2019, 13(5): 1-7 | Back to browse issues page

XML Print

Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Enayatzadeh meymandi S A, Babaeekhou L, Ghane M. Distribution of Ambler Class A Β-lactamase Genes and Evaluation of Resistance Patterns in Multi-Drug and Extensively-Drug Resistant P. aeruginosa Clinical Isolates . mljgoums. 2019; 13 (5) :1-7
URL: http://mlj.goums.ac.ir/article-1-1152-en.html
1- Department of Biology, Faculty of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
2- Department of Biology, Faculty of Science, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran , babaeekhou@iiau.ac.ir
Abstract:   (165 Views)
             Background and Objectives: Emergence and spread of multidrug-resistant (MDR) and extensively-drug resistant (XDR) Pseudomonas aeruginosa strains could complicate antipseudomonal chemotherapy. Dissemination of resistance genes, such as β-lactamases encoding genes by horizontal gene transfer can lead to development of multi-drug resistance in P. aeruginosa. The purpose of this study was to investigate the latest resistance patterns in MDR and XDR strains and evaluate Ambler class A β-lactamase gene distribution in P. aeruginosa clinical isolates.
             Methods: One hundred molecularly and biochemically identified P. aeruginosa strains isolated from different clinical specimens were tested for sensitivity to 17 antibiotics using the Kirby-Bauer disk diffusion method. PCR was performed to detect bla TEM-1, bla SHV-1, bla REP-1 and bla VEB-1 genes. Results were analyzed using SPSS and NTSYSpc softwares. 
             Results: Based on the results of antibiogram, the highest rate of resistance was observed against amikacin (100%), aztreonam (83%), ceftazidime (55%), cefepime (55%) and netilmicin (48%). In addition, the frequency of MDR and XDR isolates was 95% and 5%, respectively. The blaSHV-1, bla TEM-1, bla PER-1 and bla VEB-1 genes were detected in 31%, 24%, 13% and 10% of the isolates, respectively.
             Conclusion: Antibiotic resistance to β-lactam antibiotics and frequency of β-lactamase genes were relatively high in the study area. We also found that a significant proportion of XDR strains with different antibiotic resistance profile is isolated from tracheal specimens.
             KEYWORDS: Pseudomonas aeruginosa, Beta-Lactamase, Multidrug Resistant, Extensively Drug Resistant.
Full-Text [PDF 820 kb]   (66 Downloads)    
Type of Study: Original Paper | Subject: bacteriology
Received: 2018/12/8 | Accepted: 2019/05/8 | Published: 2019/09/2 | ePublished: 2019/09/2

1. Magiorakos AP, Srinivasan A, Carey R, Carmeli Y, Falagas M, Giske C, et al. Multidrug‐resistant, extensively drug‐resistant and pandrug‐resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3): 268-81. doi: 10.1111/j.1469-0691.2011.03570.x. [DOI:10.1111/j.1469-0691.2011.03570.x]
2. Sadikot RT, Blackwell TS, Christman JW, Prince AS. Pathogen-host interactions in Pseudomonas aeruginosa pneumonia. Am J Respir Crit Care Med. 2005;171(11):1209-23. [DOI:10.1164/rccm.200408-1044SO]
3. Palmer GC, Palmer KL, Jorth PA, Whiteley M. Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol. 2010;192(11):2722-8. doi: 10.1128/JB.00112-10. [DOI:10.1128/JB.00112-10]
4. Hirsch E B, Tam V H. Impact of multidrug-resistant Pseudomonas aeruginosa infection on patient outcomes. Expert Rev. Pharmacoecon Outcomes Res. 2010; 10(4): 441-451. doi: 10.1586/erp.10.49. [DOI:10.1586/erp.10.49]
5. Poole K. Pseudomonas aeruginosa: resistance to the max. Front Microbiol. 2011; 2: 65. doi: 10.3389/fmicb.2011.00065. [DOI:10.3389/fmicb.2011.00065]
6. Poole K. Resistance to beta-lactam antibiotics. Cell Mol Life Sci. 2004; 61(17): 2200-23. [DOI:10.1007/s00018-004-4060-9]
7. Shah A, Hasan F, Ahmed S, Hameed A. Extended-spectrum beta-lactamases (ESBLs): characterization, epidemiology and detection. Crit Rev Microbiol. 2004; 30(1): 25-32. DOI:10.1080/10408410490266429. [DOI:10.1080/10408410490266429]
8. Zhao WH, Hu ZQ. β-lactamases identified in clinical isolates of Pseudomonas aeruginosa. Crit Rev Microbiol. 2010; 36(3): 245-58. doi: 10.3109/1040841X.2010.481763. [DOI:10.3109/1040841X.2010.481763]
9. Weldhagen, GF, Poirel L, Nordmann P. Ambler class A extended-spectrum β-lactamases in Pseudomonas aeruginosa: novel developments and clinical impacts. Antimicrob Agents Chemother. 2003; 47(8): 2385-2392. [DOI:10.1128/AAC.47.8.2385-2392.2003]
10. Datta N, Kontomichalou P. Penicillinase synthesis controlled by infectious R factors in Enterobacteriaceae. Nature. 1965; 208(5007): 239-41. [DOI:10.1038/208239a0]
11. Matagne A, Lamotte-Brasseur J, Frère J-M. Catalytic properties of class A beta-lactamases: efficiency and diversity. Biochem J. 1998;330(pt 2): 581-98. [DOI:10.1042/bj3300581]
12. Gupta V. An update on newer beta-lactamases. Indian J Med Res. 2007; 126(5): 417-27.
13. Bush K. The ABCD's of beta-lactamase nomenclature. J Infect Chemother. 2013; 19(4): 549-59. doi: 10.1007/s10156-013-0640-7. [DOI:10.1007/s10156-013-0640-7]
14. Spilker T, Coenye T, Vandamme P, LiPuma JJ. PCR-based assay for differentiation of Pseudomonas aeruginosa from other Pseudomonas species recovered from cystic fibrosis patients. J Clin Microbiol. 2004; 42(5): 2074-9. [DOI:10.1128/JCM.42.5.2074-2079.2004]
15. Lee S, Park Y-J, Kim M, Lee HK, Han K, Kang CS, et al. Prevalence of Ambler class A and D beta-lactamases among clinical isolates of Pseudomonas aeruginosa in Korea. J Antimicrob Chemother. 2005; 56(1): 122-7. [DOI:10.1093/jac/dki160]
16. Alni RH, Mohammadzadeh A, Mahmoodi P. Molecular typing of Staphylococcus aureus of different origins based on the polymorphism of the spa gene: characterization of a novel spa type. 3 Biotech. 2018; 8(1): 58. [DOI:10.1007/s13205-017-1061-6]
17. Vaez H, Salehi-Abargouei A, Khademi F. Systematic review and meta-analysis of imipenem-resistant Pseudomonas aeruginosa prevalence in Iran. Germs. 2017; 7(2): 86-97. doi: 10.18683/germs.2017.1113. [DOI:10.18683/germs.2017.1113]
18. Leylabadlo HE, Pourlak T, Aghazadeh M, Asgharzadeh M, Kafil HS. Extended-spectrum beta-lactamase producing gram negative bacteria In Iran: A review. Afr J Infect Dis. 2017; 11(2): 39-53. doi: 10.21010/ajid.v11i2.6. [DOI:10.21010/ajid.v11i2.6]
19. Galvani AA, Tukmechi A. Determination of the prevalence of metallo-beta-lactamases producing Pseudomonas aeruginosa strains from clinical samples by imipenem-EDTA combination disk method in Mottahari and Emam Khomaini hospitals of Urmia. Rep Health Care. 2015; 1(2): 65-8.
20. Adjei CB, Govinden U, Moodley K, Essack SY. Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa. S Afr J Infect Dis. 2018; 33(2): 38-41. DOI: 10.1080/23120053.2017.1382090. [DOI:10.1080/23120053.2017.1382090]
21. Katvoravutthichai C, Boonbumrung K, Tiyawisutsri R. Prevalence of beta-lactamase classes A, C, and D among clinical isolates of Pseudomonas aeruginosa from a tertiary-level hospital in Bangkok, Thailand. Genet Mol Res. 2016;15(3); 1-12. doi: 10.4238/gmr.15038706. [DOI:10.4238/gmr.15038706]
22. Amirkamali S, Naserpour-Farivar T, Azarhoosh K, Peymani A. Distribution of the bla OXA, bla VEB-1, and bla GES-1 genes and resistance patterns of ESBL-producing Pseudomonas aeruginosa isolated from hospitals in Tehran and Qazvin, Iran. Rev Soc Bras Med Trop. 2017; 50(3): 315-320. doi: 10.1590/0037-8682-0478-2016. [DOI:10.1590/0037-8682-0478-2016]
23. Haghi F, Keramati N, Hemmati F, Zeighami H. Distribution of integrons and gene cassettes among metallo-beta-lactamase producing Pseudomonas aeruginosa clinical isolates. infect epidemiol microbiol. 2017; 3(2): 36-40.
24. Safaei HG, Moghim S, Isfahani BN, Fazeli H, Poursina F, Yadegari S, et al. Distribution of the Strains of Multidrug-resistant, Extensively Drug-resistant, and Pandrug-resistant Pseudomonas aeruginosa Isolates from Burn Patients. Adv Biomed Res. 2017; 6(74): 1-5. doi: 10.4103/abr.abr_239_16. [DOI:10.4103/abr.abr_239_16]
25. Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum beta-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2010; 36(1): 70-4. doi: 10.1016/j.burns.2009.01.015. [DOI:10.1016/j.burns.2009.01.015]
26. Walkty A, Adam H, Baxter M, Lagacé-Wiens P, Karlowsky JA, Hoban DJ, et al. In vitro activity of ceftolozane/tazobactam versus antimicrobial non-susceptible Pseudomonas aeruginosa clinical isolates including MDR and XDR isolates obtained from across Canada as part of the CANWARD study, 2008-16. J Antimicrob Chemother. 2018; 73(3):703-708. doi: 10.1093/jac/dkx468. [DOI:10.1093/jac/dkx468]
27. Vaez H, Faghri J, Esfahani BN, Moghim S, Fazeli H, Sedighi M, et al. Antibiotic resistance patterns and genetic diversity in clinical isolates of Pseudomonas aeruginosa isolated from patients of a referral hospital, Isfahan, Iran. Jundishapur J Microbiol. 2015; 8(8): e20130. doi: 10.5812/jjm.20130v2. [DOI:10.5812/jjm.20130v2]
28. Palavutitotai N, Jitmuang A, Tongsai S, Kiratisin P, Angkasekwinai N. Epidemiology and risk factors of extensively drug-resistant Pseudomonas aeruginosa infections. PloS one. 2018;13(2):e0193431. doi: 10.1371/journal.pone.0193431. [DOI:10.1371/journal.pone.0193431]
29. Rajat RM, Ninama G, Mistry K, Parmar R, Patel K, Vegad M. Antibiotic resistance pattern in Pseudomonas aeruginosa species isolated at a tertiary care hospital, Ahmadabad. Natl J Med Res. 2012; 2(2): 156-9.
30. Laudy AE, Róg P, Smolińska-Król K, Ćmiel M, Słoczyńska A, Patzer J, et al. Prevalence of ESBL-producing Pseudomonas aeruginosa isolates in Warsaw, Poland, detected by various phenotypic and genotypic methods. PLoS One. 2017; 12(6): e0180121. doi: 10.1371/journal.pone.0180121. [DOI:10.1371/journal.pone.0180121]
31. Ahmed OB, Asghar AH, Bahwerth FS. Prevalence of ESBL genes of Pseudomonas aeruginosa strains isolated from Makkah Hospitals, Saudi Arabia. Euro J Biol Med Sci Res. 2015; 3(6): 12-8.
32. Chen Z, Niu H, Chen G, Li M, Li M, Zhou Y. Prevalence of ESBLs-producing Pseudomonas aeruginosa isolates from different wards in a Chinese teaching hospital. Int J Clin Exp Med. 2015; 8(10): 19400-5.
33. Rafiee R, Eftekhar F, Tabatabaei SA, Tehrani DM. Prevalence of extended-spectrum and metallo beta-lactamase production in AmpC beta-lactamase producing Pseudomonas aeruginosa isolates from burns. Jundishapur J Microbiol. 2014; 7(9): e16436. doi: 10.5812/jjm.16436. [DOI:10.5812/jjm.16436]
34. Bokaeian M, Zahedani SS, Bajgiran MS, Moghaddam AA. Frequency of PER, VEB, SHV, TEM and CTX-M genes in resistant strains of Pseudomonas aeruginosa producing extended spectrum beta-lactamases. Jundishapur J Microbiol. 2015; 8(1): e13783. doi: 10.5812/jjm.13783. [DOI:10.5812/jjm.13783]

Add your comments about this article : Your username or Email:

Send email to the article author

© 2007 All Rights Reserved | Medical Laboratory Journal