1. Priyanka B, Patil R-K, Dwarakanath S. A review on detection methods used for foodborne pathogens. Indian J Med Res. 2016; 144(3): 327-338. doi: 10.4103/0971-5916.198677. [
DOI:10.4103/0971-5916.198677] [
PubMed] [
Google Scholar]
2. World Health Organization"WHO". Food safety and foodborne illness. Geneva: Switzerland. Fact sheet 237. 2002. [
Google Scholar]
3. Bautista-Baños S, Hernandez-Lauzardo A-N, Velazquez-Del Valle M-G, Hernández-López M, Barka E-A, Bosquez-Molina E, et al. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Protection. 2016; 25(2): 108-118. DOI: 10.1016/j.cropro.2005.03.010. [
DOI:10.1016/j.cropro.2005.03.010] [
Google Scholar]
4. Matan N, Rimkeeree H, Mawson A-J, Chompreeda P, Haruthaithanasan V, Parker M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. International journal of Food Microbiology. 2006; 107(2): 180-185. [
DOI:10.1016/j.ijfoodmicro.2005.07.007] [
PubMed] [
Google Scholar]
5. Karapinar M, Aktug S-E. Inhibition of foodborne pathogens by thymol, eugenol, menthol and anethole. International Journal of Food Microbiology.1987; 4(2): 161-166. [
DOI:10.1016/0168-1605(87)90023-7] [
Google Scholar]
6. Majerczyk C-D, Sadykov M-R, Luong T-T, Lee C, Somerville G-A, Sonenshein A-L. Staphylococcus aureus CodY negatively regulates virulence gene expression. Journal of bacteriology. 2008; 190: 2257-2265. DOI:10.1128/JB.01545-07. [
DOI:10.1128/JB.01545-07] [
PubMed] [
Google Scholar]
7. Ebrahimi A, Akhavan Taheri M. Characteristics of staphylococci isolated from clinical and subclinical mastitis cows in Shahrekord, Iran. Iranian journal of veterinary research. 2008; 10: 273-277. [
Google Scholar]
8. Zell C, Resch M, Rosenstein R, Albrecht T, Hertel C, Götz F. Characterization of toxin production of coagulase-negative staphylococci isolated from food and starter cultures. International journal of food microbiology. 2008; 127(3): 246-51. [
DOI:10.1016/j.ijfoodmicro.2008.07.016] [
PubMed] [
Google Scholar]
9. Qiu J, Wang D, Xiang H, Feng H, Jiang Y, Xia L, et al. Subinhibitory concentrations of thymol reduce enterotoxins A and B and α-hemolysin production in Staphylococcus aureus isolates. PLoS one. 2010; 5: e9736. [
DOI:10.1371/journal.pone.0009736] [
PubMed] [
Google Scholar]
10. Otto M. Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annual review of microbiology. 2010; 64: 143-162. [
DOI:10.1146/annurev.micro.112408.134309] [
PubMed] [
Google Scholar]
11. Hall-Stoodley L, Costerton J-W, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature reviews microbiology. 2004; 2(2): 95-108. [
DOI:10.1038/nrmicro821] [
PubMed] [
Google Scholar]
12. Bhakdi S, Tranum-Jensen J. Alpha-toxin of Staphylococcus aureus. Microbiology and Molecular Biology Reviews. 1991; 55(4):733-751. [
DOI:10.1128/MMBR.55.4.733-751.1991] [
Google Scholar]
13. Huseby M, Shi K, Brown C-K, Digre J, Mengistu F, Seo K-S, et al. Structure and biological activities of beta toxin from Staphylococcus aureus. Journal of bacteriology. 2007; 189(23): 8719-8726. DOI: 10.1128/JB.00741-07. [
DOI:10.1128/JB.00741-07] [
PubMed] [
Google Scholar]
14. Smith-Palmer A, Stewart J, Fyfe L. Influence of subinhibitory concentrations of plant essential oils on the production of enterotoxins A and B and α-toxin by Staphylococcus aureus. J Med Microbiol. 2004; 53(Pt 10): 1023-1027. doi: 10.1099/jmm.0.45567-0. [
DOI:10.1099/jmm.0.45567-0] [
PubMed] [
Google Scholar]
15. Qiu J, Feng H, Lu J, Xiang H, Wang D, Dong J, Deng X, et al. Eugenol reduces the expression of virulence-related exoproteins in Staphylococcus aureus. Applied and environmental microbiology. 2010; 76: 5846-5851. DOI: 10.1128/AEM.00704-10. [
DOI:10.1128/AEM.00704-10] [
PubMed] [
Google Scholar]
16. Yadav M-K, Chae S-W, Im G-J, Chung J-W, Song J-J. Eugenol: a phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One. 2015; 10: e0119564. [
DOI:10.1371/journal.pone.0119564] [
PubMed] [
Google Scholar]
17. Husain F-M, Ahmad I, Asif M, Tahseen Q. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila. Journal of biosciences. 2013; 38(5): 835-844. [
DOI:10.1007/s12038-013-9385-9] [
PubMed] [
Google Scholar]
18. Khan M-S-A, Zahin M, Hasan S, Husain F-M, Ahmad I.Inhibition of quorum sensing regulated bacterial functions by plant essential oils with special reference to clove oil . Letters in applied microbiology. 2009; 49: 354-360. DOI: 10.1111/j.1472-765X.2009.02666.x. [
DOI:10.1111/j.1472-765X.2009.02666.x] [
PubMed] [
Google Scholar]
19. Adams R-P. Identification of essential oil components by gas chromatography/mass spectroscopy. Journal of the American Society for Mass Spectrometry. 1997; 6: 671-672. [
DOI:10.1016/S1044-0305(97)00026-3] [
Google Scholar]
20. Olajuyigbe O-O, Afolayan A-J. In vitro antibacterial and time-kill evaluation of the Erythrina caffra Thunb. extract against bacteria associated with diarrhoea. The Scientific World Journal. 2012. [
DOI:10.1100/2012/738314] [
PubMed] [
Google Scholar]
21. Ebrahimi A, Ghasemi M, Ghasemi B. Some virulence factors of staphylococci isolated from wound and skin infections in Shahrekord, IR Iran. Jundishapur J Microbiol. 2014; 7(4): e9225. doi: 10.5812/jjm.9225. [
DOI:10.5812/jjm.9225] [
PubMed] [
Google Scholar]
22. Houari A, Di Martino P. Effect of chlorhexidine and benzalkonium chloride on bacterial biofilm formation. Letters in applied microbiology. 2007; 45(6): 652-6. [
DOI:10.1111/j.1472-765X.2007.02249.x] [
PubMed] [
Google Scholar]
23. Stepanovic S, Vukovic D, Hola V, Di Bonaventura G, Djukic S, Cirkovic I, et al. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by staphylococci. APMIS. 2007; 115: 891-899. [
DOI:10.1111/j.1600-0463.2007.apm_630.x] [
PubMed] [
Google Scholar]
24. Moon S-E, Kim H-Y, Cha J-D. Synergistic effect between clove oil and its major compounds and antibiotics against oral bacteria. Arch Oral Biol. 2011; 56(9): 907-16. doi: 10.1016/j.archoralbio.2011.02.005. [
DOI:10.1016/j.archoralbio.2011.02.005] [
PubMed] [
Google Scholar]
25. Selestino Neta M-C, Vittorazzi C, Guimarães A-C, Martins J-D-L, Fronza M, Endringer D-C, et al. Effects of β-caryophyllene and Murraya paniculata essential oil in the murine hepatoma cells and in the bacteria and fungi 24-h time-kill curve studies. Pharmaceutical biology. 2017; 55(1): 190-7. [
DOI:10.1080/13880209.2016.1254251] [
PubMed] [
Google Scholar]
26. Kalemba D-A-A-K, Kunicka A. Antibacterial and antifungal properties of essential oils. Current medicinal chemistry. 2003; 10(10): 813-829. [
DOI:10.2174/0929867033457719] [
PubMed] [
Google Scholar]
27. Espina L, Pagán R, López D, García-Gonzalo D. Individual constituents from essential oils inhibit biofilm mass production by multi-drug resistant Staphylococcus aureus. Molecules. 2015; 20(6): 11357-72. doi: 10.3390/molecules200611357. [
DOI:10.3390/molecules200611357] [
PubMed] [
Google Scholar]
28. Hammer K-A, Riley T-V, Carson C-F. Effects of tea tree oil on Staphylococcus aureus virulence factors: A report for the rural industries research and development corporation. Rural Industries Research and Development Corporation. 2005; Barton, A.C.T : Rural Industries Research. [
Google Scholar]
29. Gemmell C-G, Ford C-W. Virulence factor expression by Gram-positive cocci exposed to subinhibitory concentrations of linezolid. Journal of Antimicrobial Chemotherapy. 2002; 50(5): 665-672. [
DOI:10.1093/jac/dkf192] [
PubMed] [
Google Scholar]