Volume 12, Issue 4 (Jul-Aug 2018)                   mljgoums 2018, 12(4): 36-42 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Salimizadeh Z, Hashemi Karouei S M, Hosseini F. Dissemination of Class 1 Integron among Different Multidrug Resistant Pseudomonas aeruginosa Strains . mljgoums 2018; 12 (4) :36-42
URL: http://mlj.goums.ac.ir/article-1-1092-en.html
1- Department of Microbiology, Faculty of Bioscience, Islamic Azad University, North Tehran Branch, Tehran, Iran
2- Department of biology, Babol Branch Islamic Azad University, Babol, Iran
3- Department of Microbiology, Faculty of Bioscience, Islamic Azad University, North Tehran Branch, Tehran, Iran , farzaneh953@yahoo.com
Abstract:   (19345 Views)
ABSTRACT
            Background and objectives: The present study was conducted to detect class 1 integrons and evaluate antibiotic susceptibility patterns among clinical isolates of P. aeruginosa.
            Methods: Sixty clinical samples from blood, tracheal wounds, burns and urinary tract infections were collected from three general hospitals in Tehran, Iran. Culture of specimens was performed on common bacteriological culture media. Bacteria were  identified based on mobility, pigment production, growth at 42 oC, and oxidase and catalase tests. Overall, 21 P.  aeruginosa strains were isolated. Antimicrobial susceptibility of was evaluated via the disk diffusion method (Kirby-Bauer) according to the CLSI guidelines. Presence of the intI1, sul1, aadA2 and aadB gene cassettes was investigated using PCR. The collected data were analyzed using SPSS software (version 21).
            Results: The most effective antimicrobial agents against P. aeruginosa isolates were tetracycline and gentamicin. All P. aeruginosa isolates were multidrug re­sistant. Moreover, the intI1, sul1, aadA2 and aadB genes were found in 90.5%, 90.5%, 47.6% and 19% of the P. aeruginosa isolates, respectively.
            Conclusion: The results indicate that the presence of aadB, aadA2 and sul1 gene cassetes may play an important role in the dissemination of antimicrobial resistance determinants.
          Keywords: Pseu­domonas aeruginosa, integron, multidrug resistance.
ABSTRACT
            Background and objectives: The present study was conducted to detect class 1 integrons and evaluate antibiotic susceptibility patterns among clinical isolates of P. aeruginosa.
            Methods: Sixty clinical samples from blood, tracheal wounds, burns and urinary tract infections were collected from three general hospitals in Tehran, Iran. Culture of specimens was performed on common bacteriological culture media. Bacteria were  identified based on mobility, pigment production, growth at 42 oC, and oxidase and catalase tests. Overall, 21 P.  aeruginosa strains were isolated. Antimicrobial susceptibility of was evaluated via the disk diffusion method (Kirby-Bauer) according to the CLSI guidelines. Presence of the intI1, sul1, aadA2 and aadB gene cassettes was investigated using PCR. The collected data were analyzed using SPSS software (version 21).
            Results: The most effective antimicrobial agents against P. aeruginosa isolates were tetracycline and gentamicin. All P. aeruginosa isolates were multidrug re­sistant. Moreover, the intI1, sul1, aadA2 and aadB genes were found in 90.5%, 90.5%, 47.6% and 19% of the P. aeruginosa isolates, respectively.
            Conclusion: The results indicate that the presence of aadB, aadA2 and sul1 gene cassetes may play an important role in the dissemination of antimicrobial resistance determinants.
          Keywords: Pseu­domonas aeruginosa, integron, multidrug resistance.
ABSTRACT
            Background and objectives: The present study was conducted to detect class 1 integrons and evaluate antibiotic susceptibility patterns among clinical isolates of P. aeruginosa.
            Methods: Sixty clinical samples from blood, tracheal wounds, burns and urinary tract infections were collected from three general hospitals in Tehran, Iran. Culture of specimens was performed on common bacteriological culture media. Bacteria were  identified based on mobility, pigment production, growth at 42 oC, and oxidase and catalase tests. Overall, 21 P.  aeruginosa strains were isolated. Antimicrobial susceptibility of was evaluated via the disk diffusion method (Kirby-Bauer) according to the CLSI guidelines. Presence of the intI1, sul1, aadA2 and aadB gene cassettes was investigated using PCR. The collected data were analyzed using SPSS software (version 21).
            Results: The most effective antimicrobial agents against P. aeruginosa isolates were tetracycline and gentamicin. All P. aeruginosa isolates were multidrug re­sistant. Moreover, the intI1, sul1, aadA2 and aadB genes were found in 90.5%, 90.5%, 47.6% and 19% of the P. aeruginosa isolates, respectively.
            Conclusion: The results indicate that the presence of aadB, aadA2 and sul1 gene cassetes may play an important role in the dissemination of antimicrobial resistance determinants.
          Keywords: Pseu­domonas aeruginosa, integron, multidrug resistance.
Full-Text [PDF 581 kb]   (2382 Downloads)    
Research Article: Original Paper |
Received: 2018/06/3 | Accepted: 2018/06/3 | Published: 2018/06/3 | ePublished: 2018/06/3

References
1. Seward RJ, Towner KJ. Detection of integrons in worldwide nosocomial isolates of Acinetobacter spp. Clin Microbiol Infect. 1999; 5(6): 308-18. [DOI:10.1111/j.1469-0691.1999.tb00149.x]
2. Xu Z, Li L, Shirtliff ME, Alam M, Yamasaki S, Shi L. Occurrence and characteristics of class 1 and 2 integrons in Pseudomonas aeruginosa isolates from patients in southern China. J Clin Microbiol. 2009; 47(1): 230-4. [DOI:10.1128/JCM.02027-08]
3. Gu B, Tong M, Zhao W, Liu G, Ning M, Pan S, et al. Prevalence and characterization of class I integrons among Pseudomonas aeruginosa and Acinetobacter baumannii isolates from patients in Nanjing, China. J Clin Microbiol. 2007; 45(1): 241-3. [DOI:10.1128/JCM.01318-06]
4. Mazel D, Dychinco B, Webb VA, Davies J. Antibiotic resistance in the ECOR collection: integrons and identification of a novel aad gene. Antimicrob Agents Chemother. 2000; 44(6): 1568-74. [DOI:10.1128/AAC.44.6.1568-1574.2000]
5. Stokes H, Hall R. A novel family of potentially mobile DNA elements encoding site‐specific gene‐integration functions: integrons. Mol Microbiol. 2006; 3(12): 1669-83. [DOI:10.1111/j.1365-2958.1989.tb00153.x]
6. Mak JK. Integrons, Resistance Genes and Their Dissemination (in Gram-Negative Bacteria): School of Biotechnology & Biomolecular Sciences, University of New South Wales. Sydney, AUSTRALIA. 2009.
7. Deng Y, Bao X, Ji L, Chen L, Liu J, Miao J, et al. Resistance integrons: class 1, 2 and 3 integrons. Ann Clin Microbiol Antimicrob. 2015; 14(1): 45. [DOI:10.1186/s12941-015-0100-6]
8. Hall RM, Collis CM. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist Updat. 1998; 1(2): 109-19. [DOI:10.1016/S1368-7646(98)80026-5]
9. Jones ME, Peters E, Weersink A-M, Fluit A, Verhoef J. Widespread occurrence of integrons causing multiple antibiotic resistance in bacteria. The Lancet. 1997; 349(9067): 1742-3. [DOI:10.1016/S0140-6736(05)62954-6]
10. Tribuddharat C, Fennewald M. Integron-Mediated Rifampin Resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 1999; 43(4): 960-2.
11. Hashemizadeh Z, Bazargani A, Emami A, Rahimi M. Acinetobacter antibiotic resistance and frequency of ESBL-producing strains in ICU patients of Namazi Hospital (2008-2009). The Journal of Qazvin University of Medical Sciences. 2010; 14: 47-53.
12. Lari AR, Alaghehbandan R, Akhlaghi L. Burn wound infections and antimicrobial resistance in Tehran, Iran: an increasing problem. Ann Burns Fire Disasters. 2005; 18(2): 68.
13. Taherikalani M, Maleki A, Sadeghifard N, Mohammadzadeh D, Soroush S, Asadollahi P, et al. Dissemination of class 1, 2 and 3 integrons among different multidrug resistant isolates of Acinetobacter baumannii in Tehran hospitals, Iran. Iran Pol J Microbiol. 2011; 60(2): 169-74.
14. Stokes Ht, Hall RM. A novel family of potentially mobile DNA elements encoding site‐specific gene‐integration functions: integrons. Mol Microbiol. 1989; 3(12): 1669-83. [DOI:10.1111/j.1365-2958.1989.tb00153.x]
15. Quinteira S, Sousa JC, Peixe L. Characterization of In100, a new integron carrying a metallo-β-lactamase and a carbenicillinase, from Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005; 49(1): 451-3. [DOI:10.1128/AAC.49.1.451-453.2005]
16. Ruiz-Martínez L, López-Jiménez L, Fusté E, Vinuesa T, Martínez J, Vi-as M. Class 1 integrons in environmental and clinical isolates of Pseudomonas aeruginosa. Int J Antimicrob Agents. 2011; 38(5): 398-402. [DOI:10.1016/j.ijantimicag.2011.06.016]
17. Mahon CR, Manuselis G, Lehman DC. Textbook of diagnostic microbiology. Saunders Pennsylvania; 2000.
18. Wayne P. Performance standards for antimicrobial susceptibility testing:Twenty-Third informational supplement. Clinical and Laboratory Standards Institute; 2013.
19. Xu H, Su Z, Wang S, Dai X, Chen J, Kong F, et al. Four novel resistance integron gene-cassette occurrences in bacterial isolates from Zhenjiang, China. Curr Microbiol. 2009; 59(2): 113-7. [DOI:10.1007/s00284-009-9405-z]
20. Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother. 2006; 50(12): 4114-23. [DOI:10.1128/AAC.00778-06]
21. Randall L, Cooles S, Osborn M, Piddock L, Woodward M. Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. J Antimicrob Chemother. 2004; 53(2): 208-16. [DOI:10.1093/jac/dkh070]
22. Falagas ME, Koletsi PK, Bliziotis IA. The diversity of definitions of multidrug-resistant (MDR) and pandrug-resistant (PDR) Acinetobacter baumannii and Pseudomonas aeruginosa. J Med Microbiol. 2006; 55(12): 1619-29. [DOI:10.1099/jmm.0.46747-0]
23. Mirsalehian A, Feizabadi M, Nakhjavani FA, Jabalameli F, Goli H, Kalantari N. Detection of VEB-1, OXA-10 and PER-1 genotypes in extended-spectrum β-lactamase-producing Pseudomonas aeruginosa strains isolated from burn patients. Burns. 2010; 36(1): 70-4. [DOI:10.1016/j.burns.2009.01.015]
24. Weldhagen GF. Integrons and β-lactamases—a novel perspective on resistance. Int J Antimicrob Agents. 2004; 23(6): 556-62. [DOI:10.1016/j.ijantimicag.2004.03.007]
25. Turton JF, Kaufmann ME, Glover J, Coelho JM, Warner M, Pike R, et al. Detection and typing of integrons in epidemic strains of Acinetobacter baumannii found in the United Kingdom. J Clin Microbiol. 2005; 43(7): 3074-82. [DOI:10.1128/JCM.43.7.3074-3082.2005]
26. Mobaraki S, Aghazadeh M, Barhaghi MHS, Memar MY, Goli HR, Gholizadeh P, et al. Prevalence of integrons 1, 2, 3 associated with antibiotic resistance in Pseudomonas aeruginosa isolates from Northwest of Iran. 2018; 8(1): 2. doi: 10.1051/bmdcn/2018080102. [DOI:10.1051/bmdcn/2018080102]
27. Yousefi S, Nahaei M, Farajnia S, Ghojazadeh M, Akhi M, Sharifi Y, et al. Class 1 integron and Imipenem Resistance in Clinical Isolates of Pseudomonas aeruginosa: Prevalence and Antibiotic Susceptibility. Iran J Microbiol. 2010; 2(3): 115.
28. Mirahsani M, Khorshidi A, Moniri R, Gilasi HR. Prevalence of Class 1 Integron, Resistance Gene Cassettes and Antimicrobial Susceptibility Profiles among Isolates of Pseudomonas aeruginosa in Iran. Open J Med Microbiol 2016; 6(02): 87. [DOI:10.4236/ojmm.2016.62012]
29. Hosseini SMJ, Naeini NS, Khaledi A, Daymad SF, Esmaeili D. Evaluate the Relationship Between Class 1 Integrons and Drug Resistance Genes in Clinical Isolates of Pseudomonas aeruginosa. The open microbiology journal. 2016; 10: 188-196. [DOI:10.2174/1874285801610010188]
30. Hosseini Pour P, Momtaz H, Serajyan AA, Tajbakhsh E. Investigating Class I, II and III Integrons in Multidrug Resistance in Pseudomonas aeruginosa Isolated from Hospital Infections in Ahvaz. Int J Med Lab. 2015; 2(3): 168-76.
31. Khosravi AD, Motahar M, Montazeri EA. The frequency of class1 and 2 integrons in Pseudomonas aeruginosa strains isolated from burn patients in a burn center of Ahvaz, Iran. PloS one. 2017; 12(8): e0183061. [DOI:10.1371/journal.pone.0183061]
32. Fonseca ÉL, Vieira VV, Cipriano R, Vicente ACP. Class 1 integrons in Pseudomonas aeruginosa isolates from clinical settings in Amazon region, Brazil. FEMS Immunol Med Microbiol. 2005; 44(3): 303-9. [DOI:10.1016/j.femsim.2005.01.004]
33. Kiddee A, Henghiranyawong K, Yimsabai J, Tiloklurs M, Niumsup PR. Nosocomial spread of class 1 integron-carrying extensively drug-resistant Pseudomonas aeruginosa isolates in a Thai hospital. Int J Antimicrob Agents. 2013; 42(4): 301-6. [DOI:10.1016/j.ijantimicag.2013.05.009]
34. Cicek AC, Saral A, Duzgun AO, Cizmeci Z, Kayman T, Balci PO, et al. Screening of Class 1 and Class 2 integrons in clinical isolates of Pseudomonas aeruginosa collected from seven hospitals in Turkey: A multicenter study. Open Journal of Medical Microbiology. 2013; 3(4): 227-233. [DOI:10.4236/ojmm.2013.34034]
35. Poonsuk K, Tribuddharat C, Chuanchuen R. Class 1 integrons in Pseudomonas aeruginosa and Acinetobacter baumannii isolated from clinical isolates. Southeast Asian J Trop Med Public Health. 2012; 43(2): 376-84.
36. Hosseini Pour P, Momtaz H, Serajyan AA, Tajbakhsh E. Investigating class I, II and III integrons in multidrug resistance in Pseudomonas aeruginosa isolated from hospital infections in Ahvaz. International Journal of Medical Laboratory. 2015; 2(3): 168-76.
37. Levesque C, Piche L, Larose C, Roy PH. PCR mapping of integrons reveals several novel combinations of resistance genes. Antimicrob Agents Chemother. 1995; 39(1): 185-91. [DOI:10.1128/AAC.39.1.185]
38. Juan C, Beceiro A, Gutiérrez O, Albertí S, Garau M, Pérez JL, et al. Characterization of the new metallo-β-lactamase VIM-13 and its integron-borne gene from a Pseudomonas aeruginosa clinical isolate in Spain. Antimicrobial agents and chemotherapy. 2008; 52(10): 3589-96. [DOI:10.1128/AAC.00465-08]
39. Nikokar I, Tishayar A, Flakiyan Z, Alijani K, Rehana-Banisaeed S, Hossinpour M, et al. Antibiotic resistance and frequency of class 1 integrons among Pseudomonas aeruginosa, isolated from burn patients in Guilan, Iran. Iran J Microbiol. 2013; 5(1): 36-41.
40. Mingeot-Leclercq M-P, Glupczynski Y, Tulkens PM. Aminoglycosides: activity and resistance. Antimicrob Agents Chemother. 1999; 43(4): 727-37.
41. Shaw K, Rather P, Hare R, Miller G. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiological Reviews. 1993; 57(1): 138-63.
42. Hollingshead S, Vapnek D. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid. 1985; 13(1): 17-30. [DOI:10.1016/0147-619X(85)90052-6]
43. Cameron FH, Obbink DJG, Ackerman VP, Hall RM. Nucleotide sequence of the AAD (2′) aminoglycoside adenylyltransferase determinant aadB. Evolutionary relationship of this region with those surrounding aadA in R538-1 and dhfrll in R388. Nucleic Acids Res. 1986; 14(21): 8625-35. [DOI:10.1093/nar/14.21.8625]
44. Marchand I, Damier-Piolle L, Courvalin P, Lambert T. Expression of the RND-type efflux pump AdeABC in Acinetobacter baumannii is regulated by the AdeRS two-component system. Antimicrob Agents Chemother. 2004; 48(9): 3298-304. [DOI:10.1128/AAC.48.9.3298-3304.2004]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.