The Antioxidant Effect of *Camellia Sinesis* on on the Liver Damage Induced by *Tioacetamide* in Male Mice

Sharifi, A. (BSc)

MSc Student of Biochemistry, Department of Biology, Fars Branch, Islamic Azad University, Shiraz, Iran

Naghsh, N. (PhD)

Assistant Professor of Physiology, Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran

Razmi, N. (PhD)

Associate Professor of Medical Biochemistry, Department of Biology, Fars Branch, Islamic Azad University, Shiraz, Iran

Corresponding author:

Naghsh, N.

Email: naghsh@iaufala.ac.ir

Received: 27 Dec 2012 Revised: 26 Apr 2013 Accepted: 10 May 2013

Abstract

Background and Objective: Flavonoids play an important role in non-enzymatic reaction against oxidative stress. These are polyphenolic compounds in tea structure that could be reacted with free radicals and neutralized them. In this study, we investigated the anti-oxidant impact of *Camellia Sinesis* on the liver of thioacetamide -injected male albino mice.

Material and Methods: In this study, 40 male mice were categorized in five groups of eight. The first group was control. The second and the third group received 100mg/kg and 150mg/kg of thioacetamide, respectively. The fourth group received 100mg/kg thioacetamide followed by black tea (5 gr/100) and the fifth one received 150mg/kg thioacetamide followed by black tea (5 gr/100). Tioacetamide was given via intraperitoneal. After that, for 30 days, they were only fed on black tea (5 gr/100). At the end, catalase (CAT) and glutathione peroxidase (GPx) activity were measured.

Results: Based on the results, catalase(CAT) and glutathione peroxidase(GPx) activity were significantly increased in the groups of Thioacetamide and black tea compared to those of only Thioacetamide groups (p<0.05).

Conclusion: The increase of these enzymes in tea groups shows the anti-oxidant effect of black tea that can be caused by Catechin.

Keywords: Antioxidant; Thioacetamide; Black Tea; Glutathione *P*eroxidase; Catalase