Volume 17, Issue 3 (May-Jun 2023)                   mljgoums 2023, 17(3): 15-21 | Back to browse issues page

XML Print

1- Department of Exercise Physiology, Saveh Branch, Islamic Azad University, Saveh, Iran , izadimojtaba2006@yahoo.com
2- Department of Exercise Physiology, Islamshahr Branch, Islamic Azad University, Tehran, Iran
Abstract:   (263 Views)
Background and objectives: Genetic studies have indicated the effective role of transcription factors in insulin synthesis and secretion, especially in the case of diabetes. This study aimed to assess the effects of high-intensity interval training on transcription factor 7-like 2/ glucagon-like peptide 1 (TCF7L2 / GLP-1) axis in pancreatic tissue of obese rats with type 2 diabetes mellitus (T2DM).
Methods: For this purpose, obesity was induced in 21 male Wistar rats (weighting 220±10 g) by exposure to a high-fat diet for six weeks. Then, the rats were randomly assigned to a non-diabetic, a control T2DM, and an exercise diabetic group. Next, T2DM was induced by intraperitoneal injection of streptozotocin (25 mg/kg). The rats in the exercise group participated in a HIIT program, five times a week, for six weeks. After the intervention, TCF7L2 and GLP1 expression in the pancreas tissue was determined by real-time PCR. Serum insulin, glucose, and beta cell function were compared between the study groups. Data were analyzed using one-way ANOVA and Tukey post hoc test at a significance level of 0.05.
Results: Induction of T2DM increased glucose level and TCF7L2 expression but decreased insulin, beta cell function, and GLP-1R expression. In addition, HIIT significantly decreased TCF7L2 expression as well as glucose level, serum insulin, and beta cell function; however, it did not significantly change GLP-1R expression compared with the control diabetes rats.
Conclusion: Based on the findings, the improvement of serum insulin and glucose level following HIIT may be attributed to the decrease in TCF7L2 gene expression in the pancreatic tissue of diabetic rats.

Full-Text [PDF 463 kb]   (110 Downloads) |   |   Full-Text (HTML)  (68 Views)  
Research Article: Research Article | Subject: Biochemistry
Received: 2022/05/17 | Accepted: 2022/07/9 | Published: 2023/05/21 | ePublished: 2023/05/21

1. Kaplan NM. Hypertension and diabetes. J Hum Hypertens. 2002 Mar;16 Suppl 1:S56-60. [View at Publisher] [DOI:10.1038/sj.jhh.1001344] [PubMed]
2. Schmid DA, Held K, Ising M, Uhr M, Weikel JC, Steiger A. Ghrelin stimulates appetite, imagination of food, GH, ACTH, and cortisol, but does not affect leptin in normal controls. Neuropsychopharmacology. 2005; 30(6):1187-92. [View at Publisher] [DOI:10.1038/sj.npp.1300670] [PubMed] [Google Scholar]
3. Anders R, Ola H. Mechanisms whereby genetic variation in the TCF7L2 gene causes diabetes: novel targets for anti-diabetic therapy? New grants from Hjelt foundation. 2013. [View at Publisher]
4. Levy J, Atkinson AB, Bell PM, McCance DR, Hadden DR. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med. 1998; 15(4): 290-6. [View at Publisher] [DOI:10.1002/(SICI)1096-9136(199804)15:43.0.CO;2-M]
5. Kahn SE. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia. 2003; 46(1):3-19. [View at Publisher] [DOI:10.1007/s00125-002-1009-0] [PubMed] [Google Scholar]
6. Marchetti P, Dotta F, Lauro D, Purrello F. An overview of pancreatic beta-cell defects in human type 2 diabetes: implications for treatment. Regul Pept. 2008; 146(1-3): 4-11. [View at Publisher] [DOI:10.1016/j.regpep.2007.08.017] [PubMed] [Google Scholar]
7. Ruchat SM, Rankinen T, Weisnagel SJ, Rice T, Rao DC, Bergman RN, et al. Improvements in glucose homeostasis in response to regular exercise are influenced by PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia. 2010; 53(4): 679-89. [View at Publisher] [DOI:10.1007/s00125-009-1630-2] [PubMed] [Google Scholar]
8. Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet. 2006; 38: 320-323. [View at Publisher] [DOI:10.1038/ng1732] [PubMed] [Google Scholar]
9. Cauchi S, El Achhab Y, Choquet H, Dina C, Krempler F, Weitgasser R, et al. TCF7L2 is reproducibly associated with type 2 diabetes in various ethnic groups: a global metaanalysis. 2007; 85(7):777-82. [View at Publisher] [DOI:10.1007/s00109-007-0203-4] [PubMed] [Google Scholar]
10. Yi F, Brubaker PL, Jin T. TCF-4 mediates cell type-specific regulation of proglucagon gene expression by _-catenin and glycogen synthase kinase-3ß. J Biol Chem. 2005; 280(2):1457-64. [View at Publisher] [DOI:10.1074/jbc.M411487200] [PubMed] [Google Scholar]
11. Lyssenko V, Lupi R, Marchetti P, Del Guerra S, Orho-Melander M, Almgren P, et al. Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. J Clin Invest. 2007; 117(8):2155-63. [View at Publisher] [DOI:10.1172/JCI30706] [PubMed] [Google Scholar]
12. Hansson O, Zhou Y, Renström E, Osmark P. Molecular Function of TCF7L2: Consequences of TCF7L2 Splicing for Molecular Function and Risk for Type 2 Diabetes. Curr Diab Rep. 2010; 10(6):444-51. [View at Publisher] [DOI:10.1007/s11892-010-0149-8] [PubMed] [Google Scholar]
13. Yi F, Brubaker PL, Jin T: TCF-4 mediates cell type-specificregulation of proglucagon gene expression by beta-catenin and glycogen synthase kinase-3beta. J Biol Chem. 2005 Jan 14; 280(2):1457-64. [View at Publisher] [DOI:10.1074/jbc.M411487200] [PubMed] [Google Scholar]
14. Liu Z, Habener JF: Glucagon-like peptide-1 activation of TCF7L2-dependent Wnt signaling enhances pancreatic beta cell proliferation. J Biol Chem. 2008; 283(13): 8723-8735. [View at Publisher] [DOI:10.1074/jbc.M706105200] [PubMed] [Google Scholar]
15. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51 Suppl 3:S434-42. [View at Publisher] [DOI:10.2337/diabetes.51.2007.S434] [PubMed] [Google Scholar]
16. Eizadi M, Ravasi Ali A, Soory R, Baesi K, Choobineh S. The effect of three months resistance training on TCF7L2 expression in pancreas tissues of type 2 Diabetic rats. Avicenna J Med Biochem. 2016; 4(1): e34014. [View at Publisher] [DOI:10.17795/ajmb-34014] [Google Scholar]
17. Ramazani Rad M, Hajirasouli M, Eizadi M. The Effect of 12 Weeks of Aerobic Training on GLP-1 Receptor Expression in Pancreatic Tissue and Glycemic Control in Type 2 Diabetic Rats. Qom Univ Med Sci J. 2017; 11 (6): 36-45. [View at Publisher]
18. Gibala MJ. High intensity interval training: new insights. Sports Science Exchange. 2007; 20(2): 1-8.
19. Yazdanpazhooh S, Banaeifar A, Arshadi S, Eizadi M. Six Weeks Resistance Training Effect on FTO Expression in Type II Diabetes Rats. IJDO. 2018; 10 (4):216-222. [View at Publisher] [Google Scholar]
20. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani F, et al. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007; 41(1): 111-9. [DOI:10.1258/002367707779399518] [PubMed] [Google Scholar]
21. Daryanoosh F, Tanideh N, Bazgir B, Alizadeh H. Effect of aerobic trainings on heart's functioned and structure in diabetic Sprague-dawely albino species male rats. Res Applied Exercise Physiology 2010; 6(12): 59-72. [Persian]. [Google Scholar]
22. Karimi M, Eizadi M. The effect of interval training on FOXO1 expression in pancreas tissue of diabetic rats with high fat diet and STZ. Razi J Med Sci. 2019; 26(6):95-104. [View at Publisher] [Google Scholar]
23. Marita AR, Sarkar JA, Rane S. Type 2 diabetes in non-obese Indian subjects is associated with reduced leptin levels: Study from Mumbai, Western India. Mol Cell Biochem. 2005; 275(1-2): 143-51. [View at Publisher] [DOI:10.1007/s11010-005-1204-7] [PubMed] [Google Scholar]
24. Malin SK, Solomon TP, Blaszczak A, Finnegan S, Filion J, Kirwan JP. Pancreatic β-cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am J Physiol Endocrinol Metab. 2013; 305(10): 1248-54. [View at Publisher] [DOI:10.1152/ajpendo.00260.2013] [PubMed] [Google Scholar]
25. Madsen SM, Thorup AC, Overgaard K, Jeppesen PB.High Intensity Interval Training Improves Glycaemic Control and Pancreatic β Cell Function of Type 2 Diabetes Patients. PLoS One. 2015; 10(8): e0133286. [View at Publisher] [DOI:10.1371/journal.pone.0133286] [PubMed] [Google Scholar]
26. Krotkiewski M, Lo¨nnroth P, Mandroukas K, Wroblewski Z, and Rebuffe'-Scrive M. The effects of physical training on insulin secretion and effectiveness and on glucose metabolism in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1985; 28(12):881-90. [View at Publisher] [DOI:10.1007/BF00703130] [PubMed] [Google Scholar]
27. Whyte LJ, Ferguson C,Wilson J, Scott RA, Gill JM. Effects of single bout of very high-intensity exercise on metabolic health biomarkers in overweight/obese sedentarymen. Metabolism 2013; 62(2): 212-219. [View at Publisher] [DOI:10.1016/j.metabol.2012.07.019] [PubMed] [Google Scholar]
28. Whyte LJ, Gill JM, Cathcart AJ. Effect of 2 weeks of sprint interval training on health-related outcomes in sedentary overweight/obese men. Metabolism 2010; 59(10): 1421-1428. [View at Publisher] [DOI:10.1016/j.metabol.2010.01.002] [PubMed] [Google Scholar]
29. AbouAssi H, Slentz CA, Mikus CR, Tanner CJ, Bateman LA, Willis LH, et al. The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial. J Appl Physiol (1985). 2015;118(12):1474-82. [DOI:10.1152/japplphysiol.00509.2014] [PubMed]
30. Ruchat SM, Rankinen T, Weisnagel SJ, Rice T, Rao DC, Bergman RN, et al. Improvements in glucose homeostasis in response to regular exercise are influenced by PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia. 2010; 53(4): 679-89. [View at Publisher] [DOI:10.1007/s00125-009-1630-2] [PubMed] [Google Scholar]
31. Lyssenko V, Jonsson A, Almgren P, Pulizzi N, Isomaa B, Tuomi T, Berglund G, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes. N Engl J Med. 2008; 359(21): 2220-32. [View at Publisher] [DOI:10.1056/NEJMoa0801869] [PubMed] [Google Scholar]
32. Schäfer SA, Machicao F, Fritsche A, Häring HU, Kantartzis K. New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms. Diabetes Res Clin Pract. 2011; 93 (Suppl 1):S9-24. [View at Publisher] [DOI:10.1016/S0168-8227(11)70008-0] [PubMed] [Google Scholar]
33. Ip W, Chiang YT, Jin T. The involvement of the wnt signaling pathway and TCF7L2 in diabetes mellitus: The current understanding, dispute, and perspective. Cell Biosci. 2012; 2(1): 28. [View at Publisher] [DOI:10.1186/2045-3701-2-28] [PubMed] [Google Scholar]
34. Weedon MN. The importance of TCF7L2. Diabet Med. 2007; 24(10):1062-6. [View at Publisher] [DOI:10.1111/j.1464-5491.2007.02258.x] [PubMed] [Google Scholar]
35. da Silva Xavier G, Loder MK, McDonald A, Tarasov AI, Carzaniga R, Kronenberger K, et al. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. Diabetes. 2009;58(4):894-905. [View at Publisher] [DOI:10.2337/db08-1187] [PubMed] [Google Scholar]
36. Eizadi M, Ravasi AA, Soori R, Baesi K, Choubineh S. Effect of three months aerobic training on TCF7L2 expression in pancreatic tissue in type 2 diabet es rats induced by streptozotocin- nicotinamide. Feyz. 2017; 21(1): 1-8. [View at Publisher] [DOI:10.17795/ajmb-34014] [Google Scholar]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.