Volume 15, Issue 4 (Jul-Aug 2021)                   mljgoums 2021, 15(4): 9-14 | Back to browse issues page


XML Print


1- Department of Hematology and blood banking, Kerman University of Medical Sciences, Kerman-Iran
2- Hematooncologist, Assistant Professor in the Department of Medicine at Kerman University of Medical Sciences, Kerman, Iran
3- Department of Hematology and blood banking, Kerman University of Medical Sciences, Kerman-Iran, Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan-Iran , bahar13671023@gmail.com
Abstract:   (3099 Views)
Background and objectives: Acute myeloid leukemia (AML) is a malignancy that involves the bone marrow and peripheral blood. Some chemokines play a role in the progression, migration and tumor initiation and are therefore associated with poor prognosis. CCL2 promotes tumor growth and is associated with poor prognosis in AML patients. We investigated effects of chemotherapy on serum level of CCL2 in AML patients.
Methods: Throughout this case-control study, blood samples were collected from 25 healthy individuals and 25 AML (M4 and M5) patients before and after the first stage of the current chemotherapy regimen (7+3). Serum level of CCL2 was measured using commercial ELISA kits. Data were analyzed in SPSS 22 using the two-sample t-test and paired t-test.
Results: Before chemotherapy, serum level of CCL2 was significantly higher in the patients than in the healthy controls. Following chemotherapy, the serum level of CCL2 reduced significantly to a level comparable to that of the healthy controls.
Conclusion: The current chemotherapy (7+3) can effectively inhibit CCL2 in AML patients.
Full-Text [PDF 651 kb]   (486 Downloads) |   |   Full-Text (HTML)  (826 Views)  
Research Article: Original Paper | Subject: Laboratory hematology
Received: 2020/06/11 | Accepted: 2020/07/30 | Published: 2021/06/30 | ePublished: 2021/06/30

References
1. Brenner AK, Reikvam H, Bruserud O. A Subset of Patients with Acute Myeloid Leukemia Has Leukemia Cells Characterized by Chemokine Responsiveness and Altered Expression of Transcriptional as well as Angiogenic Regulators. Frontiers in immunology. 2016; 7: 205. [DOI:10.3389/fimmu.2016.00205] [PubMed] [Google Scholar]
2. Khorramdelazad H, Mortazavi Y, Momeni M, Arababadi MK, Khandany BK, Moogooei M, et al. Lack of Correlation Between the CCR5-Delta32 Mutation and Acute Myeloid Leukemia in Iranian Patients. Indian journal of hematology & blood transfusion : an official journal of Indian Society of Hematology and Blood Transfusion. 2015; 31(1): 29-31. [DOI:10.1007/s12288-014-0408-y] [PubMed] [Google Scholar]
3. Kupsa T, Horacek JM, Jebavy L. The role of cytokines in acute myeloid leukemia: a systematic review. Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia. 2012;156(4):291-301. [DOI:10.5507/bp.2012.108] [PubMed] [Google Scholar]
4. Faaij CM, Willemze AJ, Revesz T, Balzarolo M, Tensen CP, Hoogeboom M, et al. Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatric blood & cancer. 2010;55(2):344-8. [DOI:10.1002/pbc.22500] [PubMed] [Google Scholar]
5. Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology. 2014; 3(1): e27663. [DOI:10.4161/onci.27663] [PubMed] [Google Scholar]
6. Kornblau SM, McCue D, Singh N, Chen W, Estrov Z, Coombes KR. Recurrent expression signatures of cytokines and chemokines are present and are independently prognostic in acute myelogenous leukemia and myelodysplasia. Blood. 2010;116(20):4251-61. [DOI:10.1182/blood-2010-01-262071] [PubMed] [Google Scholar]
7. Liu Y, Pan J, Pan X, Wu L, Bian J, Lin Z, et al. Klotho-mediated targeting of CCL2 suppresses the induction of colorectal cancer progression by stromal cell senescent microenvironments. Molecular oncology. 2019. [View at Publisher] [DOI:10.1002/1878-0261.12577] [PubMed] [Google Scholar]
8. Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B, et al. The CCL2/CCR2 Axis Affects Transmigration and Proliferation but Not Resistance to Chemotherapy of Acute Myeloid Leukemia Cells. PloS one. 2017;12(1):e0168888. [DOI:10.1371/journal.pone.0168888] [PubMed] [Google Scholar]
9. Ravindran D, Cartland SP, Bursill CA, Kavurma MM. Broad-spectrum chemokine inhibition blocks inflammation-induced angiogenesis, but preserves ischemia-driven angiogenesis. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019:fj201900232RR. [DOI:10.1096/fj.201900232RR]
10. Wu SY, Yang J, Hong D, Xiao PF, Lu J, Gao L, Hu YX, Wang M, Shao XJ, Zhou CY, Li JQ, Pan J, Ling J, Gu WY, Chen RH, Hu SY. Suppressed CCL2 expression inhibits the proliferation of leukemia cells via the cell cycle protein Cyclin D1: preliminary in vitro data. Eur Rev Med Pharmacol Sci. 2018; 22(17): 5588-5596. [View at Publisher] [DOI] [PubMed] [Google Scholar]
11. Kitamura T, Qian BZ, Soong D, Cassetta L, Noy R, Sugano G, et al. CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages. The Journal of experimental medicine. 2015;212(7):1043-59. [DOI:10.1084/jem.20141836] [PubMed] [Google Scholar]
12. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nature reviews Immunology. 2017;17(9):559-72. [DOI:10.1038/nri.2017.49] [PubMed] [Google Scholar]
13. Chang AL, Miska J, Wainwright DA, Dey M, Rivetta CV, Yu D, et al. CCL2 Produced by the Glioma Microenvironment Is Essential for the Recruitment of Regulatory T Cells and Myeloid-Derived Suppressor Cells. Cancer research. 2016;76(19):5671-82. [DOI:10.1158/0008-5472.CAN-16-0144] [PubMed] [Google Scholar]
14. Loyher PL, Rochefort J, Baudesson de Chanville C, Hamon P, Lescaille G, Bertolus C, et al. CCR2 Influences T Regulatory Cell Migration to Tumors and Serves as a Biomarker of Cyclophosphamide Sensitivity. Cancer research. 2016;76(22):6483-94. [DOI:10.1158/0008-5472.CAN-16-0984] [PubMed] [Google Scholar]
15. Macanas-Pirard P, Quezada T, Navarrete L, Broekhuizen R, Leisewitz A, Nervi B, et al. The CCL2/CCR2 Axis Affects Transmigration and Proliferation but Not Resistance to Chemotherapy of Acute Myeloid Leukemia Cells. PloS one. 2017;12(1):e0168888. [DOI:10.1371/journal.pone.0168888] [PubMed] [Google Scholar]
16. Fang WB, Yao M, Brummer G, Acevedo D, Alhakamy N, Berkland C, et al. Targeted gene silencing of CCL2 inhibits triple negative breast cancer progression by blocking cancer stem cell renewal and M2 macrophage recruitment. Oncotarget. 2016;7(31):49349-67. [View at Publisher] [DOI:10.18632/oncotarget.9885] [PubMed] [Google Scholar]
17. Mukaida N, Tanabe Y, Baba T. Chemokines as a Conductor of Bone Marrow Microenvironment in Chronic Myeloid Leukemia. International journal of molecular sciences. 2017;18(8). [DOI:10.3390/ijms18081824] [PubMed] [Google Scholar]
18. Mazur G, Wrobel T, Butrym A, Kapelko-Slowik K, Poreba R, Kuliczkowski K. Increased monocyte chemoattractant protein 1 (MCP-1/CCL-2) serum level in acute myeloid leukemia. Neoplasma. 2007;54(4):285-9 [PubMed] [Google Scholar]
19. Cho HR, Kumari N, Thi Vu H, Kim H, Park CK, Choi SH. Increased Antiangiogenic Effect by Blocking CCL2-dependent Macrophages in a Rodent Glioblastoma Model: Correlation Study with Dynamic Susceptibility Contrast Perfusion MRI. Scientific reports. 2019;9(1):11085. [DOI:10.1038/s41598-019-47438-4] [PubMed] [Google Scholar]
20. Merle M, Fischbacher D, Liepert A, Grabrucker C, Kroell T, Kremser A, et al. Serum Chemokine-release Profiles in AML-patients Might Contribute to Predict the Clinical Course of the Disease. Immunological investigations. 2019:1-21. [DOI:10.1080/08820139.2019.1661429] [Google Scholar]
21. Li D, Ji H, Niu X, Yin L, Wang Y, Gu Y, et al. Tumor-associated macrophages secrete CCL2 and induce tamoxifen resistance by activating PI3K/Akt/mTOR in breast cancer. Cancer science. 2019. [DOI:10.1111/cas.14230] [PubMed] [Google Scholar]
22. Yazdani Z, Mousavi Z, Ghasemimehr N, Kalantary Khandany B, Nikbakht R, Jafari E, et al. Differential regulatory effects of chemotherapeutic protocol on CCL3_CCL4_CCL5/CCR5 axes in acute myeloid leukemia patients with monocytic lineage. Life sciences. 2019;240:117071. [DOI:10.1016/j.lfs.2019.117071] [PubMed]
23. Ma Y, Adjemian S, Galluzzi L, Zitvogel L, Kroemer G. Chemokines and chemokine receptors required for optimal responses to anticancer chemotherapy. Oncoimmunology. 2014;3(1):e27663 [View at Publisher] [DOI:10.4161/onci.27663] [PubMed] [Google Scholar]
24. Corazza F, Hermans C, Ferster A, Fondu P, Demulder A, Sariban E. Bone marrow stroma damage induced by chemotherapy for acute lymphoblastic leukemia in children. Pediatric research. 2004;55(1):152-8. [View at Publisher] [DOI:10.1203/01.PDR.0000099773.71438.91] [PubMed] [Google Scholar]
25. Edwardson DW, Parissenti AM, Kovala AT. Chemotherapy and Inflammatory Cytokine Signalling in Cancer Cells and the Tumour Microenvironment. Adv Exp Med Biol. 2019;1152:173-215. [View at Publisher] [DOI:10.1007/978-3-030-20301-6_9] [PubMed] [Google Scholar]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.