Volume 14, Issue 1 (Jan-Feb 2020)                   mljgoums 2020, 14(1): 10-14 | Back to browse issues page


XML Print


1- Medical Laboratory Sciences Research Center, Golestan University of Medical Sciences,Gorgan, Iran
2- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran , ab.khandandel@gmail.com
3- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
4- State Key Laboratory Cultivation Base of MOST, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, PR China
5- Department of Microbiology, Gorgan Branch, Islamic Azad University, Gorgan, Iran
Abstract:   (9572 Views)
Background and objectives: Staphylococcus aureus is a frequent cause of hospital- and community-associated infections on a global scale. This organism is responsible for causing an extensive range of diseases and many of them are capable of biofilm formation for their survival. By this method, treatment of them with antibiotics become very difficult and antibiotic resistance is another rising concern.
Material and Methods: The clinical samples were collected and examined for Staphylococcus aureus by microbiological and biochemical tests. Then, the biofilm formation in Staphylococcus aureus isolates was detected by microtiter plate. Using SYBR Green Real-Time PCR, the expression of PSM was determined.
Results: A total of 60 strains of Staphylococcus aureus were isolated from clinical isolates. Of them, 47 strains (78.3%) were identified biofilm producing and the others were considered negative for biofilm formation. After real-time PCR testing to detect PSM, it was determined that 100% of the strains were positive for biofilms and PSM genes. The results of phenotypic and genotypic tests of biofilm were closely related to each other and the expression of PSM B gene was 80%. It was found that 100% of strains were biofilm producing and PSM B gene was present in 78.3% (47 strains) of them.
Conclusion: The prevalence of biofilm production in Staphylococcus aureus strains isolated from clinical samples was high, so it is highly important to monitor the prevalence of these organisms in hospitals and community as well as their antimicrobial resistance.
Full-Text [PDF 758 kb]   (1377 Downloads)    
Research Article: Original Paper | Subject: Microbiology
Received: 2019/09/21 | Accepted: 2019/11/16 | Published: 2019/12/30 | ePublished: 2019/12/30

References
1. Ruiz A, Mora M, Zurita C, Larco D, Toapanta Y, Zurita J. Prevalence of methicillin‐resistant Staphylococcus aureus among health care workers of intensive care units in Ecuador. J Infect Dev Ctries.. 2014; 8(01): 116-9. [DOI:10.3855/jidc.3535]
2. Secchi C, Antunes ALS, Perez LRR, Cantarelli VV, d'Azevedo PA. Identification and detection of methicillin resistance in non-epidermidis coagulase-negative staphylococci. Braz J Infect Dis. 2008; 12(4): 316-20. [DOI:10.1590/S1413-86702008000400012]
3. DeLeo FR, Otto M, Kreiswirth BN, Chambers HF. Community-associated meticillin-resistant Staphylococcus aureus. The Lancet. 2010; 375(9725): 1557-68. [DOI:10.1016/S0140-6736(09)61999-1]
4. Piette A, Verschraegen G. Role of coagulase-negative staphylococci in human disease. Vet Microbiol. 2009; 134(1-2): 45-54. doi: 10.1016/j.vetmic.2008.09.009. [DOI:10.1016/j.vetmic.2008.09.009]
5. DeLeo FR, Otto M. An antidote for Staphylococcus aureus pneumonia? J Exp Med. 2008; 205(2): 271-4. doi: 10.1084/jem.20080167. [DOI:10.1084/jem.20080167]
6. Periasamy S, Joo H-S, Duong AC, Bach T-HL, Tan VY, Chatterjee SS, et al. How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci U S A. 2012; 109(4): 1281-6. doi: 10.1073/pnas.1115006109. [DOI:10.1073/pnas.1115006109]
7. Croes S, Deurenberg RH, Boumans M-LL, Beisser PS, Neef C, Stobberingh EE. Staphylococcus aureus biofilm formation at the physiologic glucose concentration depends on the S. aureus lineage. BMC Microbiol. 2009; 9: 229. doi: 10.1186/1471-2180-9-229. [DOI:10.1186/1471-2180-9-229]
8. Wang R, Braughton KR, Kretschmer D, Bach T-HL, Queck SY, Li M, et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nature medicine. 2007; 13(12): 1510. [DOI:10.1038/nm1656]
9. Rautenberg M, Joo H-S, Otto M, Peschel A. Neutrophil responses to staphylococcal pathogens and commensals via the formyl peptide receptor 2 relates to phenol-soluble modulin release and virulence. FASEB J. 2011; 25(4): 1254-63. [DOI:10.1096/fj.10-175208]
10. Cheung GY, Rigby K, Wang R, Queck SY, Braughton KR, Whitney AR, et al. Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS pathogens. 2010; 6(10): e1001133. [DOI:10.1371/journal.ppat.1001133]
11. Khandan Del A, Kaboosi H, Jamalli A, Peyravii Ghadikolaii F. Prevalence and Expression of PSM A Gene in Biofilm-Producing Staphylococcus aureus Clinical Isolates. Jundishapur J Microbiol. 2019 August; 12(8):e89610. [DOI:10.5812/jjm.89610]
12. Kretschmer D, Gleske A-K, Rautenberg M, Wang R, Köberle M, Bohn E, et al. Human formyl peptide receptor 2 senses highly pathogenic Staphylococcus aureus. Cell Host Microbe. 2010; 7(6): 463-73. [DOI:10.1016/j.chom.2010.05.012]
13. Wallecha A, Oreh H, van der Woude MW, deHaseth PL. Control of Gene Expression at a Bacterial Leader RNA, the agn43 Gene Encoding Outer Membrane Protein Ag43 of Escherichia coli. J. ‎Bacteriol. 2014; 196(15): 2728-35. [DOI:10.1128/JB.01680-14]
14. Cucarella C, Tormo MÁ, Knecht E, Amorena B, Lasa Í, Foster TJ, et al. Expression of the biofilm-associated protein interferes with host protein receptors of Staphylococcus aureus and alters the infective process. Infect Immun. 2002; 70(6): 3180-6. [DOI:10.1128/IAI.70.6.3180-3186.2002]
15. Arya M, Shergill IS, Williamson M, Gommersall L, Arya N, et al. Basic principles of real-time quantitative PCR. Expert Rev Mol Diagn. 2005; 5(2): 209-19. [DOI:10.1586/14737159.5.2.209]
16. Christensen GD, Simpson W, Younger J, Baddour L, Barrett F, Melton D, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: a quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985; 22(6): 996-1006. [DOI:10.1128/JCM.22.6.996-1006.1985]
17. Cafiso V, Bertuccio T, Santagati M, Demelio V, Spina D, Nicoletti G, et al. Agr-Genotyping and transcriptional analysis of biofilm-producing Staphylococcus aureus. FEMS Immunology & Medical Microbiology. 2007; 51(1): 220-7. [DOI:10.1111/j.1574-695X.2007.00298.x]
18. Eftekhar F, Dadaei T. Biofilm formation and detection of icaAB genes in clinical isolates of methicillin resistant Staphylococcus aureus. Iranian Journal of basic medical sciences. 2011; 14(2): 132-6.
19. Nourbakhsh F, Momtaz H. Evaluation of Phenotypic and Genotypic Biofilm Formation in Staphylococcus aureus Isolates Isolated from Hospital Infections in Shahrekord, 2015. J Arak Uni Med Sci. 2016; 19(4): 69-79.
20. Namvar AE, Asghari B, Ezzatifar F, Azizi G, Lari AR. Detection of the intercellular adhesion gene cluster (ica) in clinical Staphylococcus aureus isolates. GMS Hyg Infect Control. 2013; 8(1): Doc03. doi: 10.3205/dgkh000203.
21. Fursova K, Shchannikova M, Loskutova I, Shepelyakovskaya A, Laman A, Boutanaev A, et al. Exotoxin diversity of Staphylococcus aureus isolated from milk of cows with subclinical mastitis in Central Russia. J Dairy Sci. 2018; 101(5): 4325-4331. doi: 10.3168/jds.2017-14074. [DOI:10.3168/jds.2017-14074]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.