Volume 14, Issue 5 (Sep-Oct 2020)                   mljgoums 2020, 14(5): 48-53 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

roostaei M, pirani H, rashidlamir A. High intensity interval training induces the expression of Myostatin and Follistatin isoforms in rat muscle: differential effects on fast and slow twitch skeletal muscles. mljgoums 2020; 14 (5) :48-53
URL: http://mlj.goums.ac.ir/article-1-1230-en.html
1- Faculty of physical education and sport sciences. University of Tehran, Tehran, Iran
2- Faculty of marine science,chabahar maritime university,chabahar, iran , pirani_2006@yahoo.com
3- Faculty of physical education and sport sciences. University of ferdowsi mashhad
Abstract:   (1793 Views)
The aim of this study was to investigate the rate of Myostatin (MSTN) and Follistatin (FLST) gene expression in fast and slow twitch muscles in response to 8 weeks of high intensity interval training (HIIT).  To this end, 12 male 8-week old Wistar rats were randomly classified into two groups of exercise (n=6) and control (n=6). Exercise group performed a progressive HIIT protocol, five times weekly for 8 weeks using alternating sprint running for 30 min/session that divided into three 4min bouts (35-50m/min speed, >90% VO2 max) separated by a 2min active recovery period (30-50% VO2 max). Gene expression levels for MSTN and FLST in Soleus (SOL) and Extensor digitorum longus (EDL) muscles were measured by real-time RT-PCR. MSTN mRNA levels has slightly (7%); yet significantly (p<0.001), decreased in SOL muscle, while expression of this gene in EDL muscle decreased (30%) (p<0.001). Moreover, FLST gene expression in SOL muscle increased 31% (p<0.001). Interestingly, level of FLST gene expression in EDL muscle increased 100% compared to control group (p<0.001).The results provide a perspective regarding muscle differentiation in MSTN and FLST and their variation in response to HIIT and suggests that HIIT may be an effective way to decrease adipose tissue by MSTN and FLST regulation in skeletal muscles.
 
Full-Text [PDF 748 kb]   (745 Downloads)    
Research Article: Review Article | Subject: Sport Physiology
Received: 2019/07/7 | Accepted: 2019/11/20 | Published: 2020/08/24 | ePublished: 2020/08/24

References
1. Adams GR. Satellite cell proliferation and skeletal muscle hypertrophy. Appl Physiol Nutr Metab. 2006; 31(6): 782-90.doi: 10.1139/h06-053. [DOI:10.1139/h06-053]
2. Joulia-Ekaza D, Cabello G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol. 2007; 7(3): 310-5.doi: 10.1016/j.coph.2006.11.011. [DOI:10.1016/j.coph.2006.11.011]
3. Rodino‐Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve. 2009; 39(3): 283-96.doi: 10.1002/mus.21244. [DOI:10.1002/mus.21244]
4. Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, et al. Long-term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci U S A. 2008; 105(11): 4318-22. doi: 10.1073/pnas.0709144105. [DOI:10.1073/pnas.0709144105]
5. Dominique JE, Gérard C. Myostatin regulation of muscle development: molecular basis, natural mutations, physiopathological aspects. Exp Cell Res. 2006; 312(13): 2401-14.doi: 10.1016/j.yexcr.2006.04.012. [DOI:10.1016/j.yexcr.2006.04.012]
6. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997; 387(6628): 83-90.doi: 10.1038/387083a0. [DOI:10.1038/387083a0]
7. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, et al. Induction of cachexia in mice by systemically administered myostatin. Science. 2002; 296(5572): 1486-8. [DOI:10.1126/science.1069525]
8. Ziaaldini MM, Koltai E, Csende Z, Goto S, Boldogh I, Taylor AW, et al. Exercise training increases anabolic and attenuates catabolic and apoptotic processes in aged skeletal muscle of male rats. Exp Gerontol. 2015 Jul;67:9-14.doi: 10.1016/j.exger.2015.04.008. [DOI:10.1016/j.exger.2015.04.008]
9. Arnold H, Della-Fera MA, Baile CA. Review of myostatin history, physiology and applications. Int Arch Biosci. 2001; 114: 1014-22.
10. Chisada SI, Okamoto H, Taniguchi Y, Kimori Y, Toyoda A, Sakaki Y, et al. Myostatin-deficient medaka exhibit a double-muscling phenotype with hyperplasia and hypertrophy, which occur sequentially during post-hatch development. Dev Biol. 2011;359(1):82-94.doi: 10.1016/j.ydbio.2011.08.027. [DOI:10.1016/j.ydbio.2011.08.027]
11. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol. 2003; 162(6): 1135-47. doi: 10.1083/jcb.200207056. [DOI:10.1083/jcb.200207056]
12. Hansen JS, Plomgaard P. Circulating follistatin in relation to energy metabolism. Mol Cell Endocrinol. 2016; 433: 87-93. doi: 10.1016/j.mce.2016.06.002. [DOI:10.1016/j.mce.2016.06.002]
13. Amthor H, Christ B, Rashid-Doubell F, Kemp CF, Lang E, Patel K. Follistatin regulates bone morphogenetic protein-7 (BMP-7) activity to stimulate embryonic muscle growth. Dev Biol. 2002; 243(1): 115-27.doi: 10.1006/dbio.2001.0555. [DOI:10.1006/dbio.2001.0555]
14. Michel U, Rao A, Findlay JK. Rat follistatin: ontogeny of steady-state mRNA levels in different tissues predicts organ-specific functions. Biochemical and biophysical research communications. 1991; 180(1): 223-30. [DOI:10.1016/S0006-291X(05)81280-X]
15. Amthor H, Nicholas G, McKinnell I, Kemp CF, Sharma M, Kambadur R, et al. Follistatin complexes Myostatin and antagonises Myostatin-mediated inhibition of myogenesis. Dev Biol. 2004 ; 270(1): 19-30.doi: 10.1016/j.ydbio.2004.01.046. [DOI:10.1016/j.ydbio.2004.01.046]
16. Diel P, Schiffer T, Geisler S, Hertrampf T, Mosler S, Schulz S, et al. Analysis of the effects of androgens and training on myostatin propeptide and follistatin concentrations in blood and skeletal muscle using highly sensitive immuno PCR. Mol Cell Endocrinol. 2010; 330(1-2): 1-9. [DOI:10.1016/j.mce.2010.08.015]
17. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves Jr M, et al. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc. 2012; 44(3): 406-12. [DOI:10.1249/MSS.0b013e318233b4bc]
18. Schwarz NA, McKinley-Barnard SK, Spillane MB, Andre TL, Gann JJ, Willoughby DS. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle. Appl Physiol Nutr Metab. 2016; 41(8): 856-63.doi: 10.1139/apnm-2016-0047. [DOI:10.1139/apnm-2016-0047]
19. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, et al. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochemical and biophysical research communications. 2003; 300(4): 965-71. DOI: 10.1016/S0006-291X(02)02953-4. [DOI:10.1016/S0006-291X(02)02953-4]
20. Kellum E, Starr H, Arounleut P, Immel D, Fulzele S, Wenger K, Hamrick MW. Myostatin (GDF-8) deficiency increases fracture callus size, Sox-5 expression, and callus bone volume. Bone. 2009; 44(1): 17-23. doi: 10.1016/j.bone.2008.08.126. [DOI:10.1016/j.bone.2008.08.126]
21. Hamrick MW. Increased bone mineral density in the femora of GDF8 knockout mice. The Anatomical Record. 2003; 272(1): 388-91. [DOI:10.1002/ar.a.10044]
22. Bartlett JD, Close GL, MacLaren DP, Gregson W, Drust B, Morton JP. High-intensity interval running is perceived to be more enjoyable than moderate-intensity continuous exercise: implications for exercise adherence. J Sports Sci. 2011; 29(6): 547-53. [DOI:10.1080/02640414.2010.545427]
23. Hulmi JJ, Ahtiainen JP, Kaasalainen T, Pollanen E, Hakkinen K, Alen M, et al. Postexercise myostatin and activin IIb mRNA levels: effects of strength training. Med Sci Sports Exerc. 2007; 39(2): 289-97. [DOI:10.1249/01.mss.0000241650.15006.6e]
24. Hittel DS, Axelson M, Sarna N, Shearer J, Huffman KM, Kraus WE. Myostatin decreases with aerobic exercise and associates with insulin resistance. Med Sci Sports Exerc.doi: 10.1249/MSS.0b013e3181e0b9a8. [DOI:10.1249/MSS.0b013e3181e0b9a8]
25. Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle. Sports Med. 2013; 43(5): 313-38.doi: 10.1007/s40279-013-0029-x. [DOI:10.1007/s40279-013-0029-x]
26. Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, MacDonald MJ, McGee SL, et al. Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol. 2008; 586(Pt 1): 151-160.doi: 10.1113/jphysiol.2007.142109. [DOI:10.1113/jphysiol.2007.142109]
27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001; 25(4): 402-8. doi: 10.1006/meth.2001.1262. [DOI:10.1006/meth.2001.1262]
28. de Souza EO, Tricoli V, Aoki MS, Roschel H, Brum PC, Bacurau AV, et al. Effects of concurrent strength and endurance training on genes related to myostatin signaling pathway and muscle fiber responses. J Strength Cond Res. 2014; 28(11): 3215-23. [DOI:10.1519/JSC.0000000000000525]
29. Willoughby DS. Effects of heavy resistance training on myostatin mRNA and protein expression. Medicine and science in sports and exercise. 2004; 36(4): 574-82. DOI: 10.1097/00005768-200405001-00881. [DOI:10.1097/00005768-200405001-00881]
30. Willoughby DS, Taylor L. Effects of concentric and eccentric muscle actions on serum myostatin and follistatin-like related gene levels. J Sports Sci Med. 2004; 3(4): 226-33.
31. Hansen J, Brandt C, Nielsen AR, Hojman P, Whitham M, Febbraio MA, et al. Exercise induces a marked increase in plasma follistatin: evidence that follistatin is a contraction-induced hepatokine. Endocrinology. 2011; 152(1): 164-71.doi: 10.1210/en.2010-0868. [DOI:10.1210/en.2010-0868]
32. Aoki MS, Soares AG, Miyabara EH, Baptista IL, Moriscot AS. Expression of genes related to myostatin signaling during rat skeletal muscle longitudinal growth. Muscle Nerve. 2009; 40(6): 992-9.doi: 10.1002/mus.21426. [DOI:10.1002/mus.21426]
33. Gulve EA, Rodnick KJ, Henriksen EJ, Holloszy JO. Effects of wheel running on glucose transporter (GLUT4) concentration in skeletal muscle of young adult and old rats. Mech Ageing Dev. 1993; 67(1-2): 187-200.doi: 10.1016/0047-6374(93)90122-8. [DOI:10.1016/0047-6374(93)90122-8]
34. Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA. Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med (Maywood). 2003; 228(6): 706-9.doi: 10.1177/153537020322800609. [DOI:10.1177/153537020322800609]
35. Matsakas A, Friedel A, Hertrampf T, Diel P. Short‐term endurance training results in a muscle‐specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand. 2005; 183(3): 299-307.doi: 10.1111/j.1365-201X.2005.01406.x. [DOI:10.1111/j.1365-201X.2005.01406.x]
36. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L. Myostatin signals through a transforming growth factor β-like signaling pathway to block adipogenesis. Mol Cell Biol. 2003; 23(20): 7230-7242. doi: 10.1128/MCB.23.20.7230-7242.2003. [DOI:10.1128/MCB.23.20.7230-7242.2003]
37. Udy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA,et al. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci USA. 1997; 94(14): 7239-44.doi: 10.1073/pnas.94.14.7239. [DOI:10.1073/pnas.94.14.7239]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.