Effects of eight weeks of forward and backward interval running on blood glucose and lipid profiles in young men

Running title: Effects of forward and backward running on glucose and lipid profiles

Bizhan Hooshmand Moghadam

Department of Exercise Physiology, Faculty of Sport Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.

ORCID: 0000-0002-7055-9040

Parisa Pournemati

Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.

Email: pournemati@ut.ac.ir ORCID: 0000-0002-4528-5105

Maryam Dalirani

Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran.

ORCID: 0000-0001-8610-7279

Corresponding author: Parisa Pournemati

Tel: +989367116090

Email: pournemati@ut.ac.ir

Address: Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences,

University of Tehran, Tehran, Iran.

Abstract

Introduction: Regular physical activity plays a key role in improving metabolic health and physical fitness. The current study aimed to investigate and compare the impact of two methods of training, forward and backward running, on changes in body composition, lipid profiles, cardiovascular function, and some physical fitness indices in young men.

Method: Thirty eligible young men were selected and divided into two homogeneous groups of forward and backward running. Both groups performed interval running training four days a week for eight weeks (2 minutes of training with 60 to 85 percent of the maximum heart rate and 1 minute of active rest with 35 to 50 percent of the maximum heart rate). The interval training programs of both groups were exactly similar and only in opposite directions.

Results: There was a significant difference between effects of two training methods on body fat percentages, waist-hip ratio, anaerobic power, agility, triglyceride and HDL-C (P<0.05), while they showed no significant difference in terms of weight, body mass index, aerobic power, velocity, glucose, total cholesterol, LDL-C, heart rate (HR), systolic and diastolic blood pressure, and Rate Pressure Product (RPP) (P<0.05).

Conclusion: Results of the present study indicated that eight weeks of backward interval running improved some factors of physical fitness, body composition and lipid profiles in young men compared with the forward interval running.

Keywords: Forward running; Backward running; Body composition; Lipid profile; Systolic and diastolic blood pressure; Physical fitness

Introduction

All humans seek new techniques and practices to promote their health. Running is an entertaining exercise; however, the sense of vitality could be experienced every day, but the way of getting more advantages from running has always been a matter of question. Running is usually done in two ways: forward and backward running (1). In the recent decade, walking and running backwards have gained popularity as a kind of training (2). Several studies have been conducted on the effects of forward and backward running in humans, and most of these have compared them in terms of biomechanics and rehabilitation. Rehabilitation research indicates that backward running and walking may be useful for a variety of conditions, such as back pain, knee osteoarthritis, hamstring flexibility, and side effects of stroke. Results of these studies demonstrated the pain relief, increased flexibility, improved coordination, increased endurance, muscular balance and strength. Furthermore, some studies suggest a backward running program to improve forward running performance (1-3). In the field of biomechanics, studies have been conducted on effects of forward and backward running on knee muscles according to the electromyography indicating that backward running has a more favorable effect on muscle strength than forward running (4). Some researchers argued that the backward running was the most stable motor pattern according to studied backward walking on treadmill (5). Few studies have been conducted on backward running in the field of exercise physiology. Some researches indicated that backward running increases the Cardio respiratory fitness (CRF) more than forward running (2, 6). Terbulanche et al. indicated that backward movement in both walking and running imposes more metabolic reactions to body than forward movement and improved CRF (7, 8). In a study by Flynn et al. backward running and walking leads to more responses of VO₂ (oxygen consumption), heart rate (HR) and blood lactate compare to forward running and walking in the same speeds (9). The conducted studies on these three fields claimed that backward running had better physiological and functional effects and is more cost-effective than forward running (2). Some researchers believe that similar neural mechanisms may be involved in backward movement like the forward movement, but others believe that backward movement abilities result from a series of mechanisms of intrinsic adaptation in the central nervous system (5). This kind of training may increase economic efficiency in improving the economic performance compared to other current exercises. In fact, backward walking and running affects muscles that are not effective in moving forward and weaker than other muscles. According to Jason et al., coaches can use backward running in favor of their athletes and increase their strength and readiness (10, 11, 1). Studies have indicated that regular aerobic exercise activity in continuous and interval running can improve the body composition and metabolic and functional factors. Furthermore, the effect of interval training compare to continuous training has been investigated in some studies (12). Coaches and sports scientists continually seek efficient training methods that can optimize physiological adaptations within limited time frames. Considering the growing interest in diverse and high-intensity exercise programs, it is essential to identify training protocols with appropriate intensity, duration, and repetition to enhance functional and metabolic capacity. Despite the proven benefits of backward running in rehabilitation and biomechanics, its physiological effects have not been sufficiently studied. Therefore, the present study aimed to compare the effects of forward and backward interval running on body composition, lipid profiles, cardiovascular function, and selected physical fitness indices in young men.

Methods

This study utilized a semi-experimental design with pre- and post-test measurements. Thirty healthy volunteers in the study, meeting the inclusion criteria of being between 19-29 years old, non-smokers, non-drinkers, not using supplements or certain drugs, and not engaging in regular sports activities for the last six months, Exclusion criteria included hepatic, renal, bone, and cardiovascular diseases, as well as severe hypertension. Before the study, the research objectives

and procedures were fully explained to participants, and written informed consent was obtained after completing the personal information, sport medical record, and physical activity readiness questionnaires. Participants' general health and musculoskeletal and cardiorespiratory systems were confirmed by medical experts to ensure eligibility. All subjects were healthy, not under any medical treatment, and were instructed to avoid additional physical activity and maintain their usual diet during the study period. The study was approved by the ethics committee and conducted in accordance with the latest version of the Declaration of Helsinki. Maximal oxygen uptake (VO₂max) was assessed using the Shuttle Run Test to control environmental factors and determine training intensity. Based on the obtained data and indices such as age, height, weight, and BMI, thirty participants were divided into two homogeneous groups (n=15): forward running (FR) and backward running (BR). The sample size was calculated using G*Power software (Heinrich-Heine-Universität, Düsseldorf, Germany). Both groups completed an eight-week interval running program under identical conditions. Participants were asked to maintain similar dietary habits and to record their food intake for three days (two weekdays and one weekend) before and after the intervention. The data were analyzed using Nutritionist software (version 4) to determine total energy intake and macronutrient composition (proteins, fats, carbohydrates). Forty-eight hours before training, participants visited the laboratory for fasting blood sampling in the morning and body composition and cardiovascular measurements in the afternoon. On the following day, they performed functional tests in randomized order with sufficient rest between trials to avoid fatigue. After completing the eight-week training program, all participants underwent the same post-test procedures at the same time of day and under constant environmental conditions (24 ± 2 °C).

Training protocol

Both groups performed a researcher-designed interval training program, developed and piloted based on training science principles and participants' aerobic capacity. Training was conducted four days per week for eight weeks. Each session began with a 10-minute warm-up (including light exercises, fast walking, and static stretching), followed by interval running as outlined in Table 1: 2 minutes of running at 60–85% of maximum heart rate (MHR) followed by 1 minute of active rest at 35–50% MHR in the same direction. Sessions concluded with a 10-minute cool-down of slow walking and stretching. All sessions were conducted on a safe, flat track without obstacles, and training intensity was monitored using a Polar heart rate monitor (Finland).

Body composition measurement

Participants' height and weight were measured using a SECA stadiometer (Germany, accuracy <5 mm) and a NETZ digital scale (Germany, accuracy <100 g), respectively. Body mass index (BMI) was calculated as weight (kg) divided by height squared (m²). Body fat percentage was assessed using a Lafayette caliper (USA) following the Jackson–Pollock three-point method (abdomen, chest, thigh). Waist-to-hip ratio (WHR) was determined with a tape measure (precision 0.1 cm), measuring waist at the narrowest point around the umbilicus and hip at the widest point; WHR was calculated by dividing waist circumference by hip circumference.

Measuring physical fitness factors

Aerobic power was measured by using a 20-meter Shuttle run test (each subject traveled about 20 m in each turn; and passed the distance each time when a beeping sound was heard). The test was completed if the subject could not reach the 20-meter line for 3 consecutive times when the beep sound was heard. Finally, VO₂max was obtained using the equation 1. (13). The anaerobic power was measured by RAST test (including 6 repetitions of fast running at a distance of 35 meters at maximum intensity with a rest distance of 10 seconds between each repetition. The maximum power was determined using the Equation 2 (14). Speed was calculated using a 45-meter test. The time of passing through the finish line was recorded as a record using a timer with a precision of 0.01 seconds (15); agility was measured using the 9x4 test. The time was recorded by stopwatch (12). All measurements were done twice and the mean was recorded. It should be noted that measurements were done in the post-test by the same examiner who recorded the pre-test.

Equation 1: $VO_2max = 61.1 - (2.2 \times sex) - (0.462 \times age) - (0.268 \times BMI) + (0.192 \times courses)$

Equation 2: Maximum Anaerobic Power= weight (kg) $\times 35^2$ / (fastest repetition time)³

Measurement of cardiovascular functional indices

Participants' cardiovascular functional indices (heart rate, systolic blood pressure, diastolic blood pressure and Rate Pressure Product) were measured at the beginning and end under the same conditions. The mentioned items were measured by a physician using a standard mercury barometer (ALPK₂, made in Japan) and a Stethoscope (ALPK₂, made in Japan).

Measurement of lipid profiles

10 mL of peripheral venous blood samples were taken at two stages (pre- and post-tests) after 12 hours of fasting overnight and sitting on the chair from the median cubital vein of left arm of participants. Blood samples were then transferred to special tubes and centrifuged (3000 rpm for 10 minutes). Each of serum samples was poured in several microtubes and frozen at -80 °C until measurement. Concentrations of fasting glucose, high-density lipoprotein (HDL-C), and triglyceride (TG) were measured using the Colorimetric Enzymatic method, and low-density lipoprotein (LDL-C) and total cholesterol (TC) by the Enzymatic Photometric method using human kits of Pars Azmun Co. (Sensitivity of 1 mg/dl and intra-group variation coefficient of 1.2%) made in Iran.

Ethical considerations

In the present study, the researchers, accompanied by a physician and four coaches controlled the participants' status and conditions and were present at all stages, monitored the steps, and observed all ethical issues related to participants. At the beginning of the study, all steps, benefits, disadvantages, as well as the training program method were explained to participants and informed consent forms were collected from them. Participants were allowed to leave the research at any time without any reason, and fortunately, no one left. All participants' information were also analyzed confidentially.

Statistical analysis method

SPSS 19 was used to examine results. The Shapiro-Wilk test was first utilized to determine the normality of groups. The dependent t-test was then used to determine intra-group differences; and the independent t-test was used to examine inter-group differences. The significance level of all statistical tests was considered to be P < 0.05.

Results

There were no significant differences between the two groups in age, height, weight, BMI, and VO_2 max in the pre-test. In fact, it represents the homogeneity of groups. The analysis of recorded food data indicates that there is no significant difference in the protein, fat and carbohydrate intake, and calories uptake in groups before and after the training period.

Body composition

Results of body composition variables (dependent t) showed improvement in both groups after eight weeks of forward and backward running. Weight, fat percentage, body mass index and waist-to-hip ratio significantly decreased in both groups (P<0.05). The study found significant differences between the Forward running and backward running groups in percentage (p=0.014) and waist-to-hip ratio (p=0.018), but not in weight and body mass index.

Physical fitness

Results of physical fitness variables (dependent t) indicated that the aerobic power and agility increased significantly after eight weeks training. The anaerobic power indicated the significant difference only in the backward running group (p=0.038). Based on the results of the present study, there are significant differences between Forward running and backward running groups in anaerobic power (p=0.034) and agility (p=0.028). This difference was not significant in aerobic power and speed indices.

Cardiovascular function

Results of cardiovascular function variables (dependent t) showed that the heart rate (HR), systolic blood pressure, and Rate Pressure Product significantly decreased after eight weeks of training in both groups (P<0.05). The results of comparing the two groups did not show any significant differences between the Forward running and backward running groups in heart rate, systolic blood pressure, diastolic blood pressure, and rate-pressure product.

Metabolic profile

Results of lipid profiles and blood glucose (Dependent T) showed that levels of glucose, LDL-C, TG, and TC significantly decreased after eight weeks of forward and backward running, but HDL-C values increased significantly in both groups after eight weeks. Based on the results of the present study, there are significant differences between the Forward running and backward running groups in HDL-C (P=0.009) and TC (P=0.022). This difference was not significant in glucose, LDL-C, and TG indices (Table 2).

Discussion

The results of this study indicate that both backward and forward running improved body fat percentage, waist-to-hip ratio, anaerobic power, agility, triglycerides, and HDL. No significant differences were observed between groups in weight, BMI, aerobic power, velocity, glucose, total cholesterol, LDL, heart rate, systolic and diastolic blood pressure, or Rate Pressure Product, with both groups showing similar changes. The study assessed these indices after eight weeks of training. Long-term adaptations to backward running remain largely unexplored, with most research limited to single sessions; thus, only indirect evidence and proposed mechanisms could be referenced. Studies suggest that backward running elicits greater metabolic responses and enhances cardiorespiratory fitness compared to forward movement in both walking and running. It also improves lower limb range of motion and muscle strength more effectively than forward running, and is considered beneficial in rehabilitation settings (1, 2, 6). Terbulanche et al. studied the impact of backward running in increasing oxygen uptake and metabolic effects and reported that in this field, backward running had significant positive effects (8). In another study, Terbulanche found that the metabolism change rate was lower in backward movement than the forward movement (7). Additionally, studies have been conducted to measure metabolic rate of backward movements. Results of research by Chaloupka et al., indicated that the backward movement at a slope of 5% of the treadmill provided adequate stimulation for cardiorespiratory fitness for rehabilitation (16). There was a direct and non-linear relationship between oxygen consumption and different speeds of backward movement. Furthermore, there was a non-linear relationship between the heart rate and speed of backward running. This relationship was direct between heart rate and oxygen consumption (17). Studies have suggested that interval aerobic exercise can enhance fat metabolism and improve body composition by increasing the capacity of oxidative enzymes, activities of the electron transport chain enzymes, beta-oxidation cycle enzymes, the lipoprotein lipase activity, and density of β-adrenergic receptors in cells (18). Blood pressure-related mechanisms are not precisely defined, but multiple factors involve neuromuscular systems, structural and neuromuscular hormonal adaptations, as well as a decrease in systemic vascular resistance (19). Some studies have indicated that there is a positive relationship between body fat percentage and blood cholesterol level, and the improved body composition by regular physical activity improves lipid profiles (20). Motor and exercise activities reduce glucose concentrations and improve blood lipids by increasing the total glucose consumption by muscle cells and also increasing the metabolism of lipids. Evidence suggests that catecholamine hormones and growth hormone increase during physical activity, and these hormones can increase lipolysis, and subsequently the use of fat stores increases as a source of energy during physical activity, and may increase HDL and activity of lipoprotein lipase (LPL). LPL Enzyme is effective in the conversion of VLDL to HDL and increases HDL-C levels with its activity. On the other hand,

Lecithin-cholesterol acyltransferase (LCAT) converts cholesterol into HDL particles in addition to LDL. The increase in this enzyme may be responsible for increasing HDL due to training (20, 21). Some factors that may contribute to increasing the anaerobic capacity include: increasing the concentration of muscle's phosphocreatine and its rate of re-production in recovery, activities of anaerobic enzymes, activating motor units, changing fiber type I and IIX to IIa, and increasing muscle buffering capacity (22). Changes in VO₂max may be due to an increase in oxygen delivery in active muscles or an increase in its uptake in active muscles (increased capillary network, mitochondrial density, and muscle myoglobin content) that ultimately results in increased muscle blood flow (18). Overall, the differences observed in most indices between backward and forward running can be attributed to the specific mechanisms of backward running, including greater motor unit recruitment. Physiological adaptations depend on the type, structure, and characteristics of training programs, and the differences in the present study likely result from the training method itself. Backward running involves rapid movements, increased motor unit firing rates, strength-topower conversion, enhanced neuromuscular coordination, and biochemical and enzymatic changes, which together may explain the observed improvements. Each step in backward running recruits more muscles than forward running, increasing caloric expenditure, metabolic rate, cardiovascular function, and endurance (1-5). Insufficient duration, intensity, or number of sessions may account for the lack of significant differences in some indices, as intramuscular adaptations typically require 6-62 weeks (23). Overall, backward running may induce greater neuromuscular adaptations, improved motor unit recruitment, frequency, and synchronization leading to enhanced muscle power, efficiency, and coordination. Given the incomplete understanding of its mechanisms, further long-term studies are needed to clarify the physiological adaptations of this training method.

Conclusion

Results of the present study indicated that eight weeks of backward interval running had greater effects on improving some factors such as the physical fitness, body composition and lipid profiles than forward interval running in young men. In fact, these findings can be utilized to design a training program by sports coaches and ordinary people. Therefore, it is recommended to use this training method to increase performance, improve body composition and positive metabolic changes.

Acknowledgement

We would like to extend our heartfelt gratitude to all the participants who volunteered for this study. Your willingness to engage in this research and your dedication to the training protocols were essential to the success of our investigation. Thank you for your time, effort, and commitment, which made this study possible.

Funding sources

The authors declare that this study received no financial support or funding from any organization or institution.

Ethical statement

This study was conducted in accordance with the ethical standards of the Declaration of Helsinki. The study was approved by the ethics committee and carried out in agreement with the latest version of the Declaration of Helsinki. Prior to participation, all subjects provided informed consent, and all participants were informed of their right to withdraw from the study at any time without any consequences.

Conflicts of interest

The authors declare that there are no conflicts of interest regarding the publication of this study.

Author contributions

All authors, Bizhan Hooshmand Moghadam, Parisa Pournemati, and Maryam Dalirani, contributed equally to the study. They were involved in the conceptualization, methodology, data collection, analysis, literature review, and writing of the manuscript. Each author has read and approved the final version of the manuscript.

Data availability statement

The data that support the findings of this study are available from the corresponding author upon reasonable request. Due to privacy and ethical considerations, the data are not publicly available.

References

- 1. Amoozade khalili M, Hajihasani AH. Comoparison between the effects of forward and backward running exercises on lower limb function tests. J rafsanjan univ Med Sci.2011; 10(3):205-214.
- 2. Ordway JD, Laubach LL, Vanderburgh PM, Jackson KJ. The Effects of Backwards Running Training on Forward Running Economy in Trained Males. J Strength Cond Res. 2016; 30(3):763-7.
- 3. Mehdizadeh S, Arshi AR, Davids K.Quantifying coordination and coordination variability in backward versus forward running: Implications for control of motion. Gait Posture. 2015; 42(2):172-7.
- 4. Dufek J, House A, Mangus B, Melcher G, Mercer J. Backward walking: A possible active exercise for low back pain reduction and enhanced function in athletes. J Exerc Physiol Online.2011; 14: 17–26.
- 5. Hoogkamer, W, Meyns, P, and Duysens, J. Steps forward in understanding backward gait: From basic circuits to rehabilitation. Exerc Sport Sci Rev 42: 23–29, 2014.
- 6. Whitley, CR and Dufek, JS. Effects of backward walking on hamstring flexibility and low back range of motion. Int J Exerc Sci.2011; 4: 192–198.
- 7. Terblanche E, Cloete WA, du Plessis PAL, Sadie JN, Strauss A, Unger M. The metabolic transition speed between backward walking and running. Eur J Appl Physiol.2003; 90: 520–525.
- 8. Terblanche E, Page C, Kroff J, Venter RE. The effect of backward locomotion training on the body composition and cardiorespiratory fitness of young women. Int J Sports Med. 2005; 26: 214–219.
- 9. Flynn TW, Connery SM, Smutok MA, Zeballos RJ, Weisman IM. Comparison of cardiopulmonary responses to forward and backward walking and running. Med Sci Sports Exerc.1994; 26: 89–94.
- 10. Kim Y, Park J, Shim JK. Effects of aquatic backward locomotion exercise and progressive resistance exercise on lumbar extension strength in patients who have undergone lumbar diskectomy. Arch Phys Med Rehabil.2010; 91: 208–214.
- 11. Shankar P, Bhandiwad RMA, Pai H. Effectiveness of retrowalking in chronic osteoarthritis of knee joint. Innovative J MedHealth Sci.2013; 3: 19–22.
- 12. Fakourian A, Azarbaijani MA, Peeri M. Effect a period of selective military training on physical fitness, body mass index, mental health and mood in officer students. J Army Univ Med Sci. 2012; 10 (1): 17-27.

- 13. Behrad A, Askari R, Hamedinia MR. The effect of high intensity interval training and circuit resistance training on respiratory function and body composition in overweight females. Journal of Practical Studies of Biosciences in Sport .2015; 4(7):89-101.
- 14. Nikbakht H, Keshavarz S, Ebrahim K. The effects of tapering on repeated sprint ability (RSA) and maximal aerobic power in male soccer players. American Journal of Scientific Research.2011; 30: 125-33.
- 15. Arazi H, Abbasi M, Eghbali E. Effect of Hype energy drink on performance indicators and blood lactate levels in elite badminton players. sport physiology and management investigations.2015;7(4): 9-20
- 16. Chaloupka EC, Kang J, Mastrangelo MA, Donnelly MS. Cardiorespiratory and metabolic responses during forward and backward walking. J Orthop Sports Phys Ther. 1997; 25 (5): 302-6.
- 17. Myatt G, Baxter R, Dougherty R, Williams G, Halle J, Stetts D. The cardiopulmonary cost of backward walking at selected speeds. J Orthop Sports Phys Ther. 1995; 21 (3): 132-38.
- 18. MacInnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intensity. J Physiol. 2017; 95(9):2915-2930.
- 19. Lemes IR, Turi-Lynch BC, Cavero-Redondo I, Linares SN, Monteiro HL. Aerobic training reduces blood pressure and waist circumference and increases HDL-c in metabolic syndrome: a systematic review and meta-analysis of randomized controlled trials. J Am Soc Hypertens. 2018; 12(8):580-588.
- 20. Bey L, Hamilton MT. Suppression of skeletal muscle lipoprotein lipase activity during physical inactivity: a molecular reason to maintain daily low-intensity activity. The Journal of Physiology. 2003; 551(2): 673-82.
- 21. Rashidlamir A, Alizadeh A, Ebrahimiatri A, Dastani M. The effect of four-week period of aerobic exercise with cinnamon consumption on lipoprotein indicates and blood sugar in diabetic female patients (type 2). J Shahid Sadoughi Univ Med Sci. 2012; 20(5): 605-14.
- 22. Mazurek K, Krawczyk K, Zmijewski P, Norkowski H, Czajkowska A. Effects of aerobic interval training versus continuous moderate exercise programme on aerobic and anaerobic capacity, somatic features and blood lipid profile in collegate females. Ann Agric Environ Med. 2014; 21(4):844-9.
- 23. Keyhanian A, Ebrahim K, Rajabi H, Marandi S M. Compaison the effect of resistance exercise with active and passive rest on aerobic and anaerobic fitness in soccer players. jsmt. 2015; 13 (9):47-62.

Table 1. Training protocol for forward and backward running

Table 1. Truming protocol for forward and backward ruming								
		Training protocol						
Group	Week	Warm up	Body	Cool down				
			(2 minutes of training and 1 minute of active rest)	Cool down				
	1		9 repetitions - 60-65% MHR					
Forward running	2		9 repetitions - 60-65% MHR					
	3		10 repetitions - 65-70% MHR					
	4		10 repetitions - 65-70% MHR					
	5		11 repetitions - 70-75% MHR					
	6	10 min	11 repetitions - 70-75% MHR	10 min				
	7		12 repetitions - 75-80% MHR					
	8		12 repetitions - 80-85% MHR					
	1		9 repetitions - 60-65% MHR)				
	2		9 repetitions - 60-65% MHR					
Backward running	3		10 repetitions - 65-70% MHR					
	4		10 repetitions - 65-70% MHR					
	5		11 repetitions - 70-75% MHR					
	6	10 min	11 repetitions - 70-75% MHR	10 min				
	7		12 repetitions - 75-80% MHR					
	8		12 repetitions - 80-85% MHR					

Abbreviations. MHR: Maximum Heart Rate

Table 2. Glucose and lipid profile variables

	Group	Pre	Post	Intra-groups	Inter-groups
		$(M \pm SD)$	$(M \pm SD)$	*P-value	P-value
Glucose	Forward	10.14 ± 86.21	9.28 ± 82.32	0.034	0.131
(mg/dl)	running				
	Backward	8.13±83.61	10.68±77.09	0.021	
	running				
HDL-C	Forward	11.15±45.71	12.34±53.39	0.012	* 900.0
(mg/dl)	running				
	Backward	12.17±43.72	10.21±56.42	0.005	
	running				
LDL-C	Forward	24.12±93.07	23.75±77.44	0.026	0.137
(mg/dl)	running				
	Backward	27.16±87.79	25.56±70.24	0.014	
	running				
TG	Forward	48.14±129.21	±109.32	0.009	0.211
(mg/dl)	running		50.19		
	Backward	51.14±117.31	47.58±96.41	0.008	
	running				
TC	Forward	41.17±167.13	±153.22	0.027	0.022 *
(mg/dl)	running		40.28		
/	Backward	39.27±162.78	±142.52	0.011	
	running		38.16		

Abbreviations: HDL-C: High Density Lipoprotein, LDL-C: Low Density Lipoprotein, TG: Triglyceride, TC: Total cholesterol. Data is presented as mean \pm SD. * P < 0.05