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Introduction 
Infections caused by Staphylococcus aureus are among the most common causes 

of nosocomial infections in both developed and developing countries (1). This 
bacterium has a broad spectrum of virulence agents that allow it to withstand 

antimicrobial drugs, including methicillin. Methicillin-resistant S. aureus 

(MRSA) remains a leading cause of severe infections, particularly in the 
healthcare industry, associated with mortality despite rising healthcare costs (2).  

Virulence factors are expressed in MRSA infections in response to regulators 
of sub-genes (Agr genes) that encode an auto-inducing peptide (AIP) (3). The 

accessory gene regulator (Agr) is one of the major regulatory and control factors 

in the cell surface proteins and virulence gene expression of S. aureus. The Agr 
system is also essential for bacteria's capacity to form biofilms and control the 

production of binding and secretory proteins (3). Furthermore, Agr system is 

polymorphic and allows classification of S. aureus strains in four groups (Agr I, 
Agr II, Agr III, and Agr IV) according to the sequences diversity in the variable 

regions (4).  

S. aureus strains are in planktonic and biofilm modes. The ability to form 
biofilms facilitates bacterial adhesion to various surfaces of medical devices, 

including catheters and artificial heart valves as the main mechanisms in the 

pathogenicity development of S. aureus strains. Biofilms can reduce bacterial 
drug susceptibility in S. aureus-related chronic diseases, including osteomyelitis, 

endocarditis, implant-related, and wound infections (5,6). Biofilm-producing 

bacteria adopt several mechanisms to be more resistant to antibiotics. These 
mechanisms included limited antibiotic diffusion into the biofilms, and 

transmission of resistance genes across the community (7). S. aureus express 

several proteins, including clumping factors A and B (ClfA and ClfB), which can 
bind specifically to fibronectin, and some of them, such as fibronectin-binding 

proteins A and B (FnBPA and FnBPB), can bind to fibronectin, fibrinogen, and 

collagen. They are associated with the biofilm formation (8). The operon ica in 
S. aureus produces an intercellular adhesion molecule, which regulates biofilm 

formation and facilitates cell junctions. These molecules allow S. aureus to attach 

to host cell surfaces, invade, damage tissue, and form biofilms, which protect the 
internal bacteria inside biofilms, hiding from immune system defense 

mechanisms and failure of antibiotic therapy (9). 

Due to the clinical importance of MRSA, the role of biofilm formation in 
antibacterial drug resistance, and regulatory effects of Agr genes in S. aureus, the 

present study aimed to investigate biofilm-forming ability and Agr-specific group 

of clinical MRSA in Northern Iran. 
 

Methods 
In this cross-sectional study, clinical samples were collected from patients' blood, 

urine, and skin lesions in Guilan province, Northern Iran in 2021. In total, 200 

non-duplicate S. aureus isolates were included in this study and duplicate samples 
from patients were excluded. Isolation and identification of test bacteria were 

performed using biochemical and molecular methods as described previously 

(10). S. aureus ATCC43300 strain has been used as a positive control. 
Antibacterial resistance of test isolates was investigated according to the 

CLSI (2020) guideline. The disks of antibiotics (High Media-India), including 

Cefoxitin (30 µg), Cephalexin (30 µg), Cephalothin (30 µg), Penicillin (10 µg), 
Amoxicillin (25 µg), Imipenem (10µg), Gentamicin (10 µg), Clindamycin (2 µg), 

Doxycycline (30 µg), Minocycline (30 µg), Tetracycline (30 µg), Nitrofurantoin 

(300 µg), Teicoplanin, Cotrimoxazole (23.75 µg), Azithromycin (15 µg), 
Erythromycin (15 µg), Clarithromycin (15 µg), Rifampicin (5 µg), Ciprofloxacin 

(5 µg) were used to determine the antibiotic sensitivity of methicillin-resistant 

isolates. The resistance of isolates to vancomycin was assessed by MIC 
measurement using the CLSI broth microdilution method. Isolates exhibiting 

resistance to at least one agent in three or more different antimicrobial categories 

were defined as multi-drug resistant (MDR) (11).  
All the isolates were determined as MRSA following phenotypic (Cefoxitin 

disc screening) and genotypic (Amplification of the mecA gene) methods. The 

Gram-positive bacteria DNA extraction kit was used to extract the bacterial 
genome (Cinnagen, Iran). Previously published primers were used for mecA gene 

amplification (1). PCR reaction was performed in 25 μl, including 12.5 μl of PCR 

master mix (Cinnagen, Iran), 20 pmol of each primer, and 5 μL of template DNA. 
Thermocycler thermal treatment was as described previously (1). Eventually, 

PCR products were electrophoresed on 1.5% agarose gel, which was examined 

via UV transilluminator. Agr gene types were determined by Agr group-specific 
multiplex PCR using specific primers of the four types of this gene as described 

previously (3). PCR reaction was performed as described above and obtained 

products were detected by electrophoresis using a 1% agarose gel and confirmed 
by sequencing. Biofilm-forming assay was performed in a microtiter plate. In 

brief, standard overnight cultures (1.5×108 CFU/ml) were diluted 100 folds in 

Tryptic soy broth containing 1% glucose. From each culture dilution, 200 µl was 
transferred into individual wells of a 96-well flat-bottomed polystyrene plate and 

incubat¬ed overnight at 37 °C for 48 hours. Then, the wells were rinsed three 
times with PBS and subsequently fixed with methanol for 20 min, stained with 

200 μl of 0.02% crystal violet and rinsed with distilled water for 5 minutes. 

Biofilm was quantitatively analyzed by adding 200 μl of 33% glacial acetic acid 

to each well after drying the plates, followed by measuring their OD at 492 nm 

as described previously (12). Staphylococcus epidermidis ATCC 35984 strains 

and Staphylococcus epidermidis ATCC 12228 strains were used as positive and 
negative biofilm formation controls, respectively. The frequency of eight genes 

associated with biofilm formation, including icaA, icaD, bap, fnbA, fnbB, clfA, 

clfB, and cna, was determined using previously published methods in a PCR 
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reaction (9), with the same PCR reaction parameters as the previous stage. PCR 

products were detected by electrophoresis using a 1% agarose gel. The 

correlation between antibiotic resistance and Agr locus with frequency of biofilm 
encoding genes of MRSA isolates was analyzed using SPSS software and Chi-

square test. P0.05 was considered statistically significant. 
 

Results 

In total, 200 isolates of S. aureus were identified in clinical samples of urine (120 

isolates), skin lesions (45 isolates), and blood (35 isolates). Among them, 
resistance to selected antibiotics was detected as: gentamicin 50 %, clindamycin 

62.5%, cephalexin 50. %, cefoxitin 62.5%, cephalothin 62.5%, penicillin 91.5%, 

amoxicillin 71.5%, imipenem 12.5%, doxycycline 74%, minocycline 41.5%, 
tetracycline 75%, nitrofurantoin 55%, teicoplanin 9.5%, Co-Trimoxazole 38.5%, 

azithromycin 50%, erythromycin 62.5%, clarithromycin 66.5%, rifampicin 46%, 

ciprofloxacin 69.5%. In 10 isolates (8.3%), MIC values of vancomycin were ⩾4 
µg/ml and considered vancomycin-non-susceptible isolates. Moreover, more 

than 75% of the isolates demonstrated multiple antibiotic resistance. Among 125 

cefoxitin-resistant isolates, the mecA gene was detected in 120 (96 %) isolates 
using PCR reaction. 

Agr types 1, 2, 3, and 4 were identified in 78, 15, 17, and five MRSA isolates, 

respectively, and ten isolates were non-typeable for Agr locus. Among 125 

MRSA isolates, 79.2% were able to form biofilms, of which 19 (15.2%), 26 

(20.8%), and 54 (43.2%) isolates produced weak, moderate, and strong biofilms, 

respectively. The clfA, clfB, and fnbA genes were found in all isolates that passed 
the biofilm-producing phenotypic test, and icaA and icaD were found in 85.85% 

and 78% of them, respectively. The frequency of all tested biofilm-associated 

genes was significantly higher in MDR isolates (P< 0.05). All of the biofilm-
associated genes were identified in Agr-positive strains. Table 1 represents the 

frequency of biofilm production encoding genes of MRSA isolates in Agr-
specific groups. Also, agarose gel electrophoresis of mecA, Agr and selected 

biofilm associated genes are shown in Figures 1. 

 

 

Discussion 

In the present study, a total of 200 S. aureus isolates were screened for methicillin 
resistance, biofilm formation and Agr-specific grouping. Among them, 62.5% 

were methicillin-resistant and 75% were MDR isolates. The frequency of MRSA 

may vary by region, indicating the rising trend over the years. According to a 
systematic review and meta-analysis, the overall prevalence of MRSA in Iran 

varied from 20% to 90% (13). In a study by Arabestani et al. (2016), more than 

50% of S. aureus isolates were methicillin-resistant which is in line with those in 
this research (14). A 100% frequency of MRSA was also reported in an 

epidemiological investigation conducted in various teaching hospitals in Tehran 

(15). In our study, mecA was found in 96% of MRSA isolates. The absence of the 
mecA gene is common in cefoxitin-resistant strains. This finding may have 

resulted from a false-negative PCR reaction that can arise from point mutation or 

deletion in mecA gene or as a result of the non-mecA methicillin resistance 
mechanisms, such as the novel mecA homologous, mecC (16,17). The frequency 

of MDR isolates detected in the present study is higher than what was reported 

by Derakhshan et al., (2021) and is in accordance with different studies from Iran 
(3,18,19). Also, according to previous studies (3,20), the present S. aureus strains 

showed a high frequency of resistance to β-lactams, which can be due to the wide 

use of these antibacterials in the treatment of different infections. Additionally, 

79.2% of MRSA isolates have the ability to generate biofilms with the frequency 

of fnbA (80.8%), fnbB (72%), clfA (79.2%) clfB (79.2%), icaA (68%), icaD 

(62.4%), bap (12.8%) and cna (18.4%). In addition, we found an association 
between the frequency of all tested biofilm-associated genes and MDR 

phenotype (P<0.05) and Agr type I was the most prevalent type (62.4%) in tested 
isolates, followed by types III (13.6%), II (12%), and IV (4%). Furthermore, all 

of the biofilm-associated genes were identified in Agr-positive strains. This 

finding is consistent with two different studies that found that the presence of the 
Agr operon was strongly associated with the carriage of virulence genes (9,18). 

 

Conclusion 

The findings of the current study indicate a significant relationship between the 
frequency of biofilm-associated genes, MDR phenotype, and the presence of Agr 

locus in MRSA. However, the correlation between antimicrobial resistance and 

biofilm production with Agr type is difficult to demonstrate and needs further 
investigations. The present study suggests that reliable and rapid identification of 

biofilm-forming MRSA strains and treatment of related diseases are required to 

prevent the spread of these bacteria. 
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Figure 1. A. Agarose gel electrophoresis of mecA gene PCR amplicons. Lanes 1-3: 310 

bp PCR amplicons of mecA; Lane M:100 bp DNA marker; B. Agarose gel 

electrophoresis of AgrI gene PCR amplicons. Lanes 1-7: 441 bp PCR amplicons of AgrI; 

Lane M:100 bp DNA marker; C. Agarose gel electrophoresis of AgrIII gene PCR 

amplicons. Lanes 1-3: 323 bp PCR amplicons of AgrII; Lane M:100 bp DNA marker; D. 

Agarose gel electrophoresis of AgrII and Agr IV gene PCR amplicons. Lanes 1-3: 575 

bp PCR amplicons of AgrII; Lane M:100 bp DNA marker; Lanes 4 and 5: 659 bp PCR 

amplicons of AgrIV; E. Agarose gel electrophoresis of clfB gene PCR amplicons. Lanes 

1-3 and 5-15: 505 bp PCR amplicons of clfB; Lane M:100 bp DNA marker; F. Agarose 

gel electrophoresis of bap gene PCR amplicons. Lanes 1-11: 971 bp PCR amplicons of 

bap; Lane M:100 bp DNA marker; G. Agarose gel electrophoresis of clfA gene PCR 

amplicons. Lanes 1,2 and 5: 855 bp PCR amplicons of clfA; Lane M:100 bp DNA 

marker; H. Agarose gel electrophoresis of fnbA gene PCR amplicons. Lanes 1-4: 643 bp 

PCR amplicons of fnbA; Lane M:100 bp DNA marker; I. Agarose gel electrophoresis of 

fnbB gene PCR amplicons. Lanes 1-7: 524 bp PCR amplicons of fnbB; Lane M:100 bp 

DNA marker; J. Agarose gel electrophoresis of cna gene PCR amplicons. Lanes 1-6: 423 

bp PCR amplicons of cna; Lane M:100 bp DNA marker. 

Table 1. Frequency of biofilm production encoding genes of MRSA isolates in Agr-

specific group 

Gene 
Frequency 

(Percentage) 

Agr type 

Agr IV Agr III Agr II Agr I 

icaA 85 (68) 2 8 5 70 

icaD 78 (62.4) 3 4 3 68 

bap 16 (12.8) - - - 16 

fnbA 101 (80.8) 2 14 11 74 

fnbB 90 (72) - 10 9 71 

clfA 99 (79.2) 3 12 10 74 

clfB 99 (79.2) 3 13 9 74 

cna 23 (18.4) - - 1 22 
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