
 

 

 

 

ABSTRACT 

           Esophageal cancer (EC) is one of the most common types of cancer, especially in Asia. 

Esophageal squamous cell cancer (ESCC) is the most important histological subtype of EC, 

which accounts for 90% of all EC cases worldwide. ESCC is highly prevalent in Turkey, Iran, 

Kazakhstan and northern and central parts of China. Selenium is an essential micronutrient 

that is required for cellular functioning and synthesis of several selenoproteins. It also 

modulates the antioxidant defense system, cell cycle and apoptosis. This article reviews the 

most important molecular mechanisms of EC and investigates the association between 

selenium level and incidence of EC in high-risk areas. 
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U-shaped (20). The aim of the present review 

is to examine association of selenium and risk 

of EC while focusing on the molecular 

mechanism of this cancer. 

1. Molecular  mechanism  of EC 

The incidence and progression of EC are a 

multistep process accompanied with activation 

of oncogenes and inactivation of tumor 

suppressor genes (21, 22). It has been 

demonstrated that EC progression is strongly 

linked with cell proliferation, survival, 

invasion, metastasis and angiogenesis, cell 

adhesion, the imbalance of oncogene and 

tumor suppressor gene expression and 

participation of the immune system. Key 

pathways associated with EC occurrence and 

development are PI3K-Akt signaling pathway, 

MAPK signaling pathway, cell adhesion 

pathways and p53 signaling pathway. In 

addition, increased levels of interleukin 8 and 

C-X-C chemokine receptor type 7 play a main 

role in the pathogenesis of EC (23). It has been 

reported that overexpression of phosphorylated 

ERK1/2 is associated with several clinical and 

pathologic factors in ESCC (24, 25). Recent 

studies show that Rh family, C glycoprotein 

(RHCG) is mostly downregulated in primary 

ESCC in contrast with their corresponding 

normal mucosa (26, 27). Moreover, nuclear 

transcription factor-κB (NF-κB)/p65-mediated 

increased expression of MMP1 and MMP9 

contributes to tumorigenicity and metastasis in 

ESCC (28, 29). In addition, RHCG can act as a 

new tumor suppressor gene in the progression 

of ESSC by decreasing IκB phosphorylation 

and inhibiting NF-κB/p65 activation (30). 

Alcohol consumption also increases the risk of 

developing ESCC (31) mainly through 

disruption of DNA methylation (32). LINE-1 

hypomethylation, a substitute marker of global 

hypomethylation, has been proposed as an 

important phenomenon that can contribute to 

ESCC (33-35). Long non-coding RNAs 

(lncRNAs) are both oncogenic and cancer 

suppressive (36). Overexpression of lncRNA 

X inactivate-specific transcript (XIST) has 

been detected in EC tissues and cell lines. This 

lncRNA can play an oncogenic role in the EC 

progression by sponging miR-494 and 

controlling CDK6 expression (37). CDC7, a 

serine/threonine kinase, plays an essential role 

in the initiation of DNA replication and DNA 

damage (38, 39). Studies have shown that 

CDC7  was  remarkably  upregulated in ESCC 

INTRODUCTION 

        Esophageal cancer (EC) is one of the 

most common types of cancer, especially in 

Asia. In 2018, 572,034 new cases of EC and 

508,585 EC-related deaths were recorded 

worldwide (1). The highest mortality rates 

among men are 14.1 per 100,000 in eastern 

Asia and 12.8 per 100,000 in southern Africa, 

while the highest mortality rates for women 

are 7.3 per 100,000 in eastern Asia and 6.2 per 

100,000 in southern Africa (2). The high-risk 

areas for EC are in the “Asian EC Belt” 

consisting of countries such as Turkey, Iran, 

Kazakhstan and China (3). According to recent 

reports, of 35,000 cancer-related deaths in 

Iran, 5,800 cases have had EC (4). Esophageal 

cancer occurs in the tissue lining of the interior 

surface or epithelium of the esophagus. There 

are two main histological subtypes of EC: 

esophageal squamous cell carcinomas (ESCC) 

and esophageal adenocarcinomas (EAC) (5). 

Based on epidemiological studies, various 

factors including gender, obesity, alcohol 

consumption, smoking, gastroesophageal 

reflux disease, Helicobacter pylori infection, 

N-nitroso compounds, toxins and 

micronutrient deficiency may increase the risk 

of developing EC (6-13). In countries such as 

the United States, Australia and Western 

Europe where EAC is the predominant 

histological subtype (14), obesity, tobacco use, 

low intake of fruits and vegetables and 

gastroesophageal reflux disease are the most 

important risk factors. The annual incidence 

rate of ESCC is over 100 cases per 100,000 

people in countries such as China, Iran and 

Turkey. In these countries, tobacco and 

alcohol consumption, low intake of fruits and 

vegetables, low socioeconomic status and 

genetic predisposition are known risk factors 

of ESCC (15). Generally, ESCC is more 

common in men (69%) than in women (31%), 

but the incidence rates varies widely in high- 

and low-risk areas (16). The highest rate of 

ESCC and gastric cardia adenocarcinoma is 

reported from Taihung Mountain range of 

China and northeastern Iran (17). Previous 

studies have reported a significant inverse 

correlation between serum selenium levels and 

the risk of ESCC. In the high-risk areas of 

China, selenium deficiency was the main risk 

factor for ESCC (18, 19). However, in high-

risk areas of Iran (such as Golestan Province), 

the association of dietary selenium intake with 

risk of  ESCC   was   nonlinear   and   possibly  
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GPx8 have cysteine instead of selenocysteine. 

This family of proteins protects membrane 

lipids and macromolecules against the 

oxidative damage generated by peroxides 

through conversion of hydrogen peroxide to 

water by utilization of glutathione (GSH) as an 

electron donor (H2O2 + 2GSH → GS-SG + 

2H2O)(55, 56). The most abundant member of 

this family is GPx1, which is generally 

expressed in cytosol and mitochondria of 

different tissues (57). Expression of this 

protein is directly linked to selenium levels 

(58). This GPx can prevent oxidative DNA 

damage and prevent tumorigenesis in the 

initiation phase (59). Since GPx2 is solely 

expressed in the gastrointestinal tract (60), it 

might have protective effects against oxidative 

damage (61). Overexpression of GPx2 has 

been reported in neoplastic transformation of 

squamous epithelial cells (62) and Barrett's 

esophagus (63). Furthermore, GPx2 was 

remarkably overexpressed in ESCC tumor 

tissues compared with non-tumor tissues. 

Thus, GPx2 can be an important prognostic 

factor in ESCC patients (64). While GPx3, a 

plasma antioxidant enzyme, its expression is 

reduced in ESCC tissues and ESCC cell lines, 

and through the FAK/AKT pathway, it inhibits 

tumor gene in ESCC (65). It is proposed that 

low selenium levels might increase GPx2 

expression, decrease GPx1 expression, but 

does not alter GPx4 expression (66). 

Thioredoxin reductase (TrxR) enzymes 

consisting of TrxR1, 2 and 3 reduce 

thioredoxins and play a role in the reduction of 

selenite, selenodiglutathione and 

methylseleninate. Hence, the TrxR family 

plays a vital role in selenium metabolism (67-

69). In addition, TrxR expression is necessary 

for maintenance of redox balance and many 

tumor suppression pathways. For instance, 

TrxR1 boost maturation of p53, inactive forms 

of protein kinase C and phosphatase and tensin 

homolog (70-72). Selenoprotein W (SEPW1) 

contains a single selenocysteine residue at its 

active site and has been reported to have 

glutathione-dependent antioxidant activity in 

vivo (73). 

3.2 Selenium and cell cycle regulation  

Cyclins, cyclin dependent kinases (CDKs) and 

CDK inhibitors are cell cycle regulators (74). 

Selenocysteine reduces the expression of 

cyclin A, thus inducing S phase cell cycle 

arrest via ROS-mediated DNA damage and 

controlling  the  MAPKs  and  AKT   signaling 

tissues, and depletion of CDC7 can prevent 

cell proliferation and induce apoptosis in 

ESSC cells (40). 

1. Nutritional aspects of selenium 

Selenium is an essential trace element that was 

first discovered by Jöns Jakob Berzelius in 

1817. Although initially known as a toxic 

compound (41), selenium has been recognized 

as an important micronutrient since the 1950s 

(42). Selenium is present in various organic 

and inorganic chemical forms. The organic 

chemical form is found mostly in food, but 

inorganic selenium is mainly found in water 

and air (43). Organic forms of selenium (such 

as selenocysteine and selenomethionine) and 

inorganic compounds such as selenate and 

selenite are absorbed through the intestinal 

lumen and converted to selenide for 

selenoproteins (SePs) synthesis or selenosugar 

for elimination (44). To date, twenty-five SePs 

genes have been identified in humans (45). 

Most SePs, including glutathione peroxidase 

(GPx) and thioredoxin reductase (TrxR) 

family of proteins are involved in the 

antioxidant defense system. Other mechanisms 

related to SePs include control of apoptosis, 

modulation of immune system, synthesis of 

thyroid hormones and deoxyribonucleoside 

triphosphates, reduction of oxidized proteins, 

selenium transport and storage, protein folding 

and degradation of misfolded proteins in the 

endoplasmatic reticulum (46). Various studies 

suggest that insufficient levels of selenium and 

SePs are related to cancer (46, 47). Because of 

the inhibitory effects of selenium on tumor 

cells, this compound can be used to prevent 

tumorigenesis (48). 

3.1 Selenium and antioxidant defense systems 

Oxidative stress occurs when the production of 

free radicals, such as reactive oxygen species 

(ROS), reactive nitrogen species (RNS, e.g. 

nitric oxide, NO) as well as oxidised lipids and 

proteins overbalances an organism’s 

antioxidant abilities, which leads to cell/tissue 

damage (49). Reactive oxygen species-induced 

DNA damage can trigger carcinogenesis and 

cancer progression (50-52). Glutathione 

peroxidase and thioredoxin reductase are 

responsible for redox homeostasis and 

neutralization of peroxides and other 

electrophiles (53, 54). The glutathione 

peroxidase family consists of eight known 

glutathione peroxidases (GPx1-8). In humans, 

GPx1, GPx2, GPx3, GPx4 and GPx6 contain 

selenocysteine,   whereas   GPx5,    GPx7   and  
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Province), there was a significant positive 

association between selenium levels in the soil 

and EC incidence rates (104). Another study in 

the Golestan Province showed that total 

selenium content in soil, grain, loess and 

sediments is higher in high-risk areas for EC. 

However, this study indicated that selenium 

deficiency does not play a main role in the 

etiology of EC in the Golestan Province (17, 

105). A significant positive correlation was 

found between selenium level in rice seeds and 

EC rates in the Golestan Province. These 

results propose that selenium levels in soil and 

rice might be involved in the pathogenesis of 

EC (106). Another study in a high-risk area of 

Iran revealed a U-shaped association between 

selenium intake and incidence of ESCC (20). 

Cohort studies in the Netherlands revealed an 

inverse association between selenium level in 

the toenail and risk of ESSC (107). However, a 

case-control study in the Golestan Province 

did not find such correlation (108). In a 

Chinese population, low dietary selenium 

intake was found as a major risk factor for 

ESSC (109), especially in smokers and heavy 

drinkers with p53 Pro/Pro and GSTP1 Ile/Ile 

genotypes (110). In southeastern Iran, serum 

selenium level was significantly lower in 

cancer patients than in healthy individuals 

(111). Furthermore, there was a significant 

positive correlation between serum selenium 

level and occurrence of esophageal squamous 

dysplasia in East Africa, a high-risk area for 

incidence of ESCC (112).  

 
CONCLUSION  

          Findings suggest that GPx3, TrxR1 and 

SELENOH can prevent cancer progression, 

while GPx2, SEPW1 and Sep15 promote 

cancer progression. Several studies in high-

risk areas for EC demonstrated that both 

selenium deficiency and increased selenium 

level could alter the risk of developing ECs. 

Further research is needed to understand the 

molecular mechanisms related to the 

association of selenium with EC. 
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pathways (75). Selenoprotein W is the only 

selenoprotein whose mRNA was increased by 

sub-micromolar concentrations of selenium in 

cultured human cells (76). It may control cell 

cycle via several mechanisms. Selenoprotein 

W promotes cell cycle progression by 

regulating the dissociation of 14-3-3 from 

CDC25B (77). Moreover, SEPW1 silencing 

increases p53 level by reducing proteasomal 

degradation of p53, induces p21 expression 

and prevents G1/S transition (78). SELENOH 

is a selenium-sensitive SePs with a disturbed 

expression under suboptimal selenium 

concentrations. Unlike GPx2, TXNRD1 and 

SELENOF, knockdown of SELENOH 

improves cell proliferation in vitro and 

promotes tumor growth in vivo, indicating that 

SELENOH may suppress tumor progression 

(79-82). SELENOH affect cell cycle through 

inhibition of G1/S transition by modulating 

p21 and CCNE1 expression (83, 84). The 15-

kDa selenoprotein (Sep15) can also contribute 

to cancer progression (85-89). A study 

reported that Sep15-deficient Chang liver cells 

are arrested at the G1 phase by upregulation of 

p21 and p27 (82). Both p21 and p27 inhibit 

cell cycle progression by interacting with 

cyclins and CDKs (90). 

3.3 Selenium and apoptosis  

At low concentrations, selenium exerts 

antioxidant effects by suppressing apoptosis 

and inhibiting oxidative stress (91). In high 

concentrations, selenium acts as a prooxidant 

and hence could contribute to the fight against 

cancer cells (92-96). Pharmacological doses of 

selenium compounds stimulate apoptosis in 

cancer cells through p53-dependent pathways 

(97-100). Sodium selenite induces apoptosis 

via ROS-mediated inhibition of NF-κB 

signaling, increases Bax expression and 

reduces expression of anti-apoptotic proteins, 

such as Bcl-2 (101). Selenomethionine can 

lead to apoptosis and prevent the growth of 

cancer cells by significantly reducing level of 

β-catenin and c-Myc expression. In addition, 

selenomethionine can suppress growth of 

cancer cells through mechanisms related to 

Wnt/β-catenin pathway (102). Methylseleninic 

acid strongly inhibits the growth of ESCC cell 

lines by promoting β-catenin degradation 

through ubiquitin–proteasome pathway (103).  

4. Association of EC and selenium 

Several studies have investigated the 

correlation  between  selenium  and  EC.  In a 

high-risk   area   for   EC   in   Iran    (Golestan  
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