Volume 13, Issue 3 (May-Jun 2019)                   mljgoums 2019, 13(3): 14-19 | Back to browse issues page


XML Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mousavi M, Johari B, Zargan J, Haji Noor Mohammadi A, Goudarzi H R, Dezianian S et al . Investigating Antibacterial Effects of Latrodectus Dahli Crude Venom on Escherichia coli, Staphylococcus aureus and Bacillus subtilis. mljgoums 2019; 13 (3) :14-19
URL: http://mlj.goums.ac.ir/article-1-1201-en.html
1- Department of Biology, Faculty of Basic Science, Imam Hossein University, Tehran, Iran
2- Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
3- Department of Venomous Animals and Antivenin Production, Razi Vaccine and Serum Research Institute, Karaj, Iran
4- Department of Biology, Faculty of Basic Sciences, Razi University, Kermanshah, Iran
Abstract:   (5409 Views)
ABSTRACT
            Background and Objectives: Nowadays, infections with antibiotic-resistant bacteria are among the most important causes of mortality worldwide. This has attracted the attention of researchers to seek suitable alternatives for antibiotics. The venom of many toxic species such as arthropods has antibacterial properties. In this study, we investigated antibacterial effects of crude venom of Latrodectus dahli on Escherichia coli, Staphylococcus aureus, and Bacillus subtilis.
            Methods: Lyophilized crude venom of L. dahli was dissolved in 50 mM Tris-HCl buffer. Protein concentration was determined by the Bradford assay. Then, the bacteria were exposed to different concentrations (31.25-250 ng/mL) of the crude venom. Inhibitory activity of the venom against the bacteria was determined by MTT assay and determining minimum inhibitory concentration (MIC).
            Results: Results of the MTT assay showed that the crude venom significantly inhibited the growth of E. coli (31.25 and 62.5 ng/mL), S. aureus (at 250 ng/mL) and B. subtilis (at 125 and 250 ng/mL). In the MIC experiment, the crude venom significantly inhibited the growth of E. coli (at concentrations of 31.25 and 62.5ng/mL), S. aureus (at concentrations of 31.25-250 ng/mL) and B. subtilis (at concentrations of 31.25-250ng/mL).
            Conclusion: The crude venom of L. dahli and its components showed relatively strong antibacterial effects.
            Keywords: Spider venoms, Black Widow Spider, Antibacterial agent, Drug-resistance.
Full-Text [PDF 846 kb]   (1043 Downloads)    
Research Article: Original Paper | Subject: Sport Physiology
Received: 2019/03/16 | Accepted: 2019/03/16 | Published: 2019/03/16 | ePublished: 2019/03/16

References
1. Kobbi S, Nedjar N, Chihib N, Balti R, Chevalier M, Silvain A, et al. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microbial pathogenesis. 2018;115:41-9. doi: 10.1016/j.micpath.2017.12.009. [DOI:10.1016/j.micpath.2017.12.009]
2. Nascimento Canhas I, Dias Heneine LG, Fraga T, Sampaio de Assis DC, Borges MH, Chartone-Souza E, et al. Antibacterial activity of different types of snake venom from the Viperidae family against Staphylococcus aureus. Acta Scientiarum Biological Sciences. 2017; 39(3): 309-319. [DOI:10.4025/actascibiolsci.v39i3.33826]
3. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacological reviews. 2003; 55(1): 27-55. [DOI:10.1124/pr.55.1.2]
4. Abtahi B, Mosafer Khorjestan S, Ghezellou P, Aliahmadi A, Ranaei Siadat SO, Kazemi SM, et al. Effects of Iranian Snakes Venom True Sea and Terrestrial Snakes on Some Bacterial Cultures. Journal of the Persian Gulf. 2014; 5(18): 27-36.
5. Starr CG, Wimley WC. Antimicrobial peptides are degraded by the cytosolic proteases of human erythrocytes. Biochim Biophys Acta Biomembr. 2017; 1859(12): 2319-2326. doi: 10.1016/j.bbamem.2017.09.008. [DOI:10.1016/j.bbamem.2017.09.008]
6. Primon-Barros M, José Macedo A. Animal Venom Peptides: Potential for New Antimicrobial Agents. Current topics in medicinal chemistry. 2017; 17(10): 1119-56. doi: 10.2174/1568026616666160930151242. [DOI:10.2174/1568026616666160930151242]
7. Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget. 2017; 8(28): 46635. [DOI:10.18632/oncotarget.16743]
8. Troeira Henriques Sn, Lawrence N, Chaousis S, Ravipati AS, Cheneval O, Benfield AH, et al. Redesigned spider peptide with improved antimicrobial and anticancer properties. ACS Chemical Biology. 2017; 12(9): 2324-34. DOI: 1021/acschembio.7b00459. [DOI:10.1021/acschembio.7b00459]
9. Kuhn-Nentwig L. Antimicrobial and cytolytic peptides of venomous arthropods. Cellular and Molecular Life Sciences CMLS. 2003; 60(12): 2651-68. [DOI:10.1007/s00018-003-3106-8]
10. Zamani A, Mirshamsi O, Savoji A, Shahi M. Contribution to the distribution of spiders with significant medical importance (Araneae: Loxosceles and Latrodectus) in Iran, with a new record for the country. Iranian Journal of Animal Biosystematics. 2014 Aug 13; 10 (1): 57-66 [DOI:10.3897/zookeys.463.8692]
11. Abolfazl A, Ahmad TM, Hadi R. Venom and envenomation of Iranian black widow spider, Latrodectus. Journal of Experimental Zoology, India. 2013; 16(2): 541-3.
12. Ushkaryov YA, Rohou A, Sugita S. α-Latrotoxin and its receptors. Handb Exp Pharmacol. 2008; 184: 171-206. [DOI:10.1007/978-3-540-74805-2_7]
13. Andrews JM. Determination of minimum inhibitory concentrations. Journal of antimicrobial Chemotherapy. 2001; 48(suppl 1): 5-16. [DOI:10.1093/jac/48.suppl_1.5]
14. Shebl R, Mohamed A, Ali AE, Amin M. Antimicrobial Profile of Selected Snake Venoms and Their Associated Enzymatic Activities. 2012; 2(4): 251-263. [DOI:10.9734/BMRJ/2012/2091]
15. Wang H, Cheng H, Wang F, Wei D, Wang X. An improved 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) reduction assay for evaluating the viability of Escherichia coli cells. J Microbiol Methods. 2010; 82(3): 330-3. doi: 10.1016/j.mimet.2010.06.014. [DOI:10.1016/j.mimet.2010.06.014]
16. Garcia F, Villegas E, Espino-Solis GP, Rodriguez A, Paniagua-Solis JF, Sandoval-Lopez G, et al. Antimicrobial peptides from arachnid venoms and their microbicidal activity in the presence of commercial antibiotics. J Antibiot (Tokyo). 2013; 66 [DOI:10.1038/ja.2012.87]
17. Roose-Amsaleg C, Laverman AM. Do antibiotics have environmental side-effects? Impact of synthetic antibiotics on biogeochemical processes. Environ Sci Pollut Res Int. 2016; 23(5): 4000-12. doi: 10.1007/s11356-015-4943-3. [DOI:10.1007/s11356-015-4943-3]
18. Langdon A, Crook N, Dantas G. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med. 2016; 8(1): 39. doi: 10.1186/s13073-016-0294-z. [DOI:10.1186/s13073-016-0294-z]
19. Benli M, Yigit N. Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae: Agelenidae). Journal of Venomous Animals and Toxins including Tropical Diseases. 2008; 14(4): 641-50. [DOI:10.1590/S1678-91992008000400007]
20. Walsh CT, Wencewicz TA. Prospects for new antibiotics: a molecule-centered perspective. The Journal of antibiotics. 2014; 67(1): 7-22. [DOI:10.1038/ja.2013.49]
21. Butler MS, Blaskovich MA, Cooper MA. Antibiotics in the clinical pipeline at the end of 2015. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo). 2017; 70 [DOI:10.1038/ja.2016.72]
22. Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon. 2014; 88: 115-37. doi: 10.1016/j.toxicon.2014.06.006. [DOI:10.1016/j.toxicon.2014.06.006]
23. da Mata ÉCG, Mourão CBF, Rangel M, Schwartz EF. Antiviral activity of animal venom peptides and related compounds. J Venom Anim Toxins Incl Trop Dis. 2017; 23(1): 3. doi: 10.1186/s40409-016-0089-0. [DOI:10.1186/s40409-016-0089-0]
24. Abreu TF, Sumitomo BN, Nishiyama MY, Oliveira UC, Souza GH, Kitano ES, et al. Peptidomics of Acanthoscurria gomesiana spider venom reveals new toxins with potential antimicrobial activity. J Proteomics. 2017; 151: 232-242. doi: 10.1016/j.jprot.2016.07.012. [DOI:10.1016/j.jprot.2016.07.012]
25. Kuhn-Nentwig L. Antimicrobial and cytolytic peptides of venomous arthropods. Cell Mol Life Sci. 2003; 60(12): 2651-68. [DOI:10.1007/s00018-003-3106-8]
26. Samy RP, Stiles BG, Franco OL, Sethi G, Lim LH. Animal venoms as antimicrobial agents. Biochemical pharmacology. 2017; 134: 127-38. doi: 10.1016/j.bcp.2017.03.005. [DOI:10.1016/j.bcp.2017.03.005]
27. Liu Z, Zhao Y, Li J, Xu S, Liu C, Zhu Y, Liang S. The venom of the spider Macrothele raveni induces apoptosis in the myelogenous leukemia K562 cell line. Leuk Res. 2012; 36 [DOI:10.1016/j.leukres.2012.02.025]
28. Al-Asmari AK, Alamri MA, Almasoudi AS, Abbasmanthiri R, Mahfoud M. Evaluation of the in vitro antimicrobial activity of selected Saudi scorpion venoms tested against multidrug-resistant micro-organisms. J Glob Antimicrob Resist. 2017; 10: 14-18. doi: 10.1016/j.jgar.2017.03.008. [DOI:10.1016/j.jgar.2017.03.008]
29. de Melo ET, Estrela AB, Santos EC, Machado PR, Farias KJ, Torres TM, et al. Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin. Peptides. 2015; 68: 3-10. doi: 10.1016/j.peptides.2015.03.003. [DOI:10.1016/j.peptides.2015.03.003]
30. Ponnappan N, Chugh A. Cell-penetrating and cargo-delivery ability of a spider toxin-derived peptide in mammalian cells. Eur J Pharm Biopharm. 2017;114:145-153. doi: 10.1016/j.ejpb.2017.01.012. [DOI:10.1016/j.ejpb.2017.01.012]
31. Lian W, Lian H, Li Q, An H, Liu S. The venom of spider Haplopelma hainanum suppresses proliferation and induces apoptosis in hepatic cancer cells by caspase activation in vitro. J Ethnopharmacol. 2018; 225: 169-177. doi: 10.1016/j.jep.2018.06.022. [DOI:10.1016/j.jep.2018.06.022]
32. Benli M, Yigit N. Antibacterial activity of venom from funnel web spider Agelena labyrinthica (Araneae: Agelenidae). J Venom Anim Toxins incl Trop Dis. 2008; 14(4): 641-50. [DOI:10.1590/S1678-91992008000400007]
33. Ghasemi-Dizgah A, Amirmozafari N. Evaluation of antibacterial effect of Tarantula cubensisvenome (Theranekron). Int J Bioplogy Pharm Appl Sci. 2015; 4: 5980-9.
34. Lei Q, Yu H, Peng X, Yan S, Wang J, Yan Y, et al. Isolation and preliminary characterization of proteinaceous toxins with insecticidal and antibacterial activities from black widow spider (L. tredecimguttatus) eggs. Toxins. 2015; 7(3): 886-99. [DOI:10.3390/toxins7030886]

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2007 All Rights Reserved | Medical Laboratory Journal

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.