Volume 14, Issue 2 (Mar-Apr 2020)                   mljgoums 2020, 14(2): 20-25 | Back to browse issues page


XML Print


1- Young Researchers and Elite Club, Urmia Branch, Islamic Azad university, urmia, Iran. , kouhkanmaryam@gmail.com
2- Department of Organic Chemistry.Faculty of science, Urmia Branch, Islamic Azad University, Urmia, Iran
3- Department of Chemistry, Faculty of Science, Urmia University, Urmia 57154, Iran
4- Depatmant of Biology, Islamic Azad University Electronic Branch, Iran
5- Department of bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
Abstract:   (4351 Views)
ABSTRACT
             Background and objectives: Antimicrobial resistance is a serious threat to global public health. The overuse and misuse of antibiotics are the most important contributing factors to development of antibiotic resistance. Thus, there is an urgent need to identify and discover new compounds against drug-resistant microorganisms. We have previously synthesized new series of 3-substituted 5H-(1,2,4)triazolo(3',4':2,3) (1,3,4)thiadiazino(5,6-b)quinoxaline derivatives (4a-4f). Here, we evaluate the antimicrobial activity of these derivatives against methicillin-resistant Staphylococcus aureus, S. aureus, Streptococcus pyogenes, Pseudomonas aeruginosa, Escherichia coli, Candida albicans, Candida tropicalis and Candida krusei.
             Methods: The agar well diffusion and agar dilution methods were used for determining inhibition zone diameter and minimum inhibitory concentration during preliminary evaluation of antimicrobial activity.
             Results: All synthesized compounds exhibited antibacterial and antifungal activity against the tested microorganisms.
             Conclusion: Our findings indicate the antimicrobial potential of the six novel synthetic triazolo thiadiazin quinoxaline compounds.
             Keywords: Antimicrobial, Anti-bacterial agents, Antifungal agents, Triazolo, Thiadiazin, Quinoxaline.
Full-Text [PDF 756 kb]   (637 Downloads)    
Research Article: Original Paper | Subject: Microbiology
Received: 2019/01/5 | Accepted: 2019/11/20 | Published: 2020/03/12 | ePublished: 2020/03/12

References
1. Nadia S, Jumat S, Emad Y. Synthesis and antimicrobial activities of 9H-carbazole derivatives. ARAB J CHEM. 2016; 9(1): S781-S786. [DOI:10.1016/j.arabjc.2011.08.013]
2. Suresh M, Lavanya P, Sudhakar D, Vasu K, Venkata Rao C. Synthesis and biological activity of 8-chloro-(1,2,4)triazolo(4,3-a)quinoxalines. J Chem Pharm Res. 2010; 2: 497-504.
3. Popiołek Ł, Kosikowska U, MazurL, Dobosz M, Malm A. Synthesis and antimicrobial evaluation of some novel 1,2,4-triazole and 1,3,4-thiadiazole derivatives. Med Chem Res. 2013; 22(7): 3134-3147. DOI 10.1007/s00044-012-0302-9. [DOI:10.1007/s00044-012-0302-9]
4. El-Sawy ER1, Bassyouni FA, Abu-Bakr SH, Rady HM, Abdlla MM, Synthesis and biological activity of some new 1-benzyl and 1-benzoyl-3-heterocyclic indole derivatives, Acta Pharm. 2010; 60(1):55-71. doi: 10.2478/v10007-010-0004-0. [DOI:10.2478/v10007-010-0004-0]
5. H Washton. Review of fluconazole: A new triazole antifungal agent. Diagnostic Microbiology and Infectious Disease. 1989; 12(4): 229-233: doi.org/10.1016/0732-8893(89)90141-7. [DOI:10.1016/0732-8893(89)90141-7]
6. Moreno E, Ancizu S, Pérez-Silanes S, Torres E, Aldana I, Monge A. Synthesis and Antimycobacterial Activity of New Quinoxaline-2-Carboxamide 1,4-di-N- Oxide Derivatives. Eur J Med Chem. 2010; 45(10): 4418-26. doi: 10.1016/j.ejmech.2010.06.036. [DOI:10.1016/j.ejmech.2010.06.036]
7. Yurttaş L, Ertaş M, Cankılıç MY, Demirayak Ş. Synthesis and Antimycobacterial Activity Evaluation of Isatin-derived 3- ((4- aryl - 2- thiazolyl))hydrazone)-1H- indol- 2, 3- diones. Acta Pharm. Sci. 2017; 55(1): 51-58. DOI: 10.23893/1307-2080.APS.0554. [DOI:10.23893/1307-2080.APS.0554]
8. Petronijevic j, Bugarčić ZM, Janković N. Synthesis of Quinoxaline-Based Compounds and Their Antitumor and Antiviral Potentials. Mini-Reviews in Organic Chemistry. 2017; 14(3): DOI: 10.2174/1570193X14666171201143357. [DOI:10.2174/1570193X14666171201143357]
9. El-Sayed WA, Khalaf HS, Mohamed SF, Hussien HA, Kutkat OM, Amr AE. Synthesis and Antiviral Activity of 1,2,3-Triazole Glycosides Based Substituted Pyridine via Click Cycloaddition. Russ. J Gen Chem. 2017; 87: 2444-2453. DOI:10.1134/S1070363217100279. [DOI:10.1134/S1070363217100279]
10. Burguete A, Pontiki E, Hadjipavlou-Litina D, Ancizu S, Villar R, Solano B, et al. Synthesis and biological evaluation of new quinoxaline derivatives as antioxidant and anti-inflammatory agents. Chem Biol Drug Des. 2011; 77: 255-67. doi: 10.1111/j.1747-0285.2011.01076.x. [DOI:10.1111/j.1747-0285.2011.01076.x]
11. Mahaney PE, Webb MB, Ye F, Sabatucci JP, Steffan RJ. Synthesis and activity of a new class of pathway-selective estrogen receptor ligands: hydroxybenzoyl-3,4-dihydroquinoxalin-2(1H)-ones. Bioorg Med Chem. 2006; 14: 3455-3466. [DOI:10.1016/j.bmc.2006.01.001]
12. Rangisetty JB, Gupta CNVHB, Prasad AL, Srinivas P, Sridhar N, Parimoo P, et al. Synthesis of new arylaminoquinoxalines and their antimalarial activity in mice. J Pharm Pharmacol. 2001; 53: 1409-1413. DOI:10.1211/002235701177776. [DOI:10.1211/0022357011777765]
13. Rajasekaran A, Rajagopal KA. Rajagopal:Synthesis of some novel triazole derivatives as anti-nociceptive and anti-inflammatory agents. Acta Pharm. 2009; 59(3): 355-64. doi: 10.2478/v10007-009-0026-7. [DOI:10.2478/v10007-009-0026-7]
14. Guillon J, Cohen A, Gueddouda NM, Das RN, Moreau S, Ronga L. Design, synthesis and antimalarial activity of novel bis{N-((pyrrolo(1,2-a)quinoxalin-4-yl)benzyl)-3-aminopropyl}amine derivatives. J Enzyme Inhib Med Chem. 2017; 32(1): 547-563. doi: 10.1080/14756366.2016.1268608. [DOI:10.1080/14756366.2016.1268608]
15. Manohar S, Khan SI, Rawat DS. Synthesis of 4‐aminoquinoline‐1,2,3‐triazole and 4‐aminoquinoline‐1,2,3‐triazole‐1,3,5‐triazine Hybrids as Potential Antim alarial Agents. Chem Biol Drug Des. 2011; 78(1): 124-36. doi: 10.1111/j.1747-0285.2011.01115.x.. [DOI:10.1111/j.1747-0285.2011.01115.x]
16. Miri Mahmoody, Jabbar Khalafy, Mehdi M. Baradarani. A study of the synthesis and nonlinear optical properties of 3-substituted 5H-(1,2,4)triazolo(3',4':2,3) (1,3,4)thiadiazino(5,6-b)quinoxaline derivatives. Chemistry Today. 2017; 35: 44-47.
17. El-Attar MAZ, Shaaban OG, Elbayaa RY, Habib NS, El-Hawash SAM, Wahab AEA. Design and Synthesis of Some New 1,2,4-Triazolo(4,3a )Quinoxaline Derivatives as Potential Antimicrobialagents. Med chem. 2015; 5: 489-495. Doi:10.4172/2161-0444.1000307. [DOI:10.4172/2161-0444.1000307]
18. Cheruiyot KR, Olila D, Kateregga J. In-vitro antibacterial activity of selected medicinal plants from Longisa region of Bomet district, Kenya. Afr Health Sci. 2009; 9(1): S42-S46.
19. Magaldi S, Mata-Essayag S, Hartung de Capriles C, Perez C, Colella MT, Olaizola C, et al. Well diffusion for antifungal susceptibility testing. Int J Infect Dis. 2004; 8:39-45. doi:10.1016/j.ijid.2003.03.002. [DOI:10.1016/j.ijid.2003.03.002]
20. Moses I, Maduagwu U, Osazuwa E. Evaluation of the Antifungal Activity of Aqueous and Alcoholic Extracts of Six Spices. Am J Plant Sci. 2016; 7(1): 118-125. DOI: 10.4236/ajps.2016.71013. [DOI:10.4236/ajps.2016.71013]
21. Gopi R, Senthil S. Quinoline appended 1, 2, 3-triazole analogues: Synthesis, antimicrobial and docking evaluation. Int J Chem Stud. 2017; 5(1): 208-216.
22. Mishra R, Kumar S, Kumar R, Majeed J. Synthesis and in vitro antimicrobial activity of some triazole derivatives. Chem Soc.2010; 55(3): 359-362. [DOI:10.4067/S0717-97072010000300019]
23. Khalafy J, Mohammadlou M, Mahmoody M, Salami F, Marjani AP. Facile synthesis of new 10-substituted-5H-naphtho (1, 2-e)(1, 2, 4) triazolo (3, 4-b)(1, 3, 4) thiadiazin-5-ones. Tetrahedron Letters. 2015; 56: 1528-1530. [DOI:10.1016/j.tetlet.2015.02.002]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.