Volume 13, Issue 6 (Nov-Dec 2019)                   mljgoums 2019, 13(6): 44-50 | Back to browse issues page


XML Print


1- Hamedan branch,Islamic Azad University,Hamedan, Iran
2- Hamedan branch,Islamic Azad University,Hamedan, Iran , habiby.reza@gmail.com
Abstract:   (9428 Views)
ABSTRACT
           Background and Objectives: Candida albicans is one of the most common fungal pathogens that can form biofilm, particularly on surface of medical devices. In recent years, C. albicans has shown increased resistance to antifungal agents. In this experimental study, we aimed to study effects of superparamagnetic iron oxide nanoparticles (Fe3O4 nanoparticles or SPION) on biofilm formation by C. albicans.
           Methods: First, the SPION were synthesized by chemical co-precipitation. The formation of nanoparticles was confirmed by Fourier-transform infrared spectroscopy and X-ray diffraction. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of SPION were determined. Then, antibiofilm effects of the nanoparticles were investigated by enzyme-linked immunosorbent assay. Finally, data were analyzed using SPSS 22.0 at significance level of 0.05.
           Results: According to the results of X-ray diffraction, the SPION had a mean diameter of about 70 nm. MIC and MFC values of SPION against C. albicans were 100 ppm and 200 ppm which reduced biofilm formation by 87.2% and 100%, respectively. SPION showed significant inhibitory effects on C. albicans growth and biofilm formation.
           Conclusion: Based on the findings, SPION may be considered as a novel family of fungicidal compounds. However, further studies are necessary to evaluate the safety of these nanoparticles for treatment of fungal infections in humans.
           Keywords: Candida albicans; Biofilms; SPION; Nanoparticles.
Full-Text [PDF 455 kb]   (946 Downloads)    
Research Article: Original Paper | Subject: Mycology
Received: 2018/12/27 | Accepted: 2019/05/22 | Published: 2019/12/10 | ePublished: 2019/12/10

References
1. 1) Deorukhkar SC, Saini S. Why Candida species have emerged as important nosocomial pathogens. Int J Curr Microbiol App Sci. 2016; 5(1): 533-545. http://dx.doi.org/10.20546/ijcmas.2016.501.054. [DOI:10.20546/ijcmas.2016.501.054]
2. 2) Shao LC, Sheng CQ, Zhang WN. Recent advances in the study of antifungal lead compounds with new chemical scaffolds. Yao xue xue bao= Acta pharmaceutica Sinica. 2007; 42(11): 1129-36. PMID: 18300466.
3. 3) Rajeevan S, Thomas M, Appalaraju B. Characterisation and antifungal susceptibility pattern of Candida species isolated from various clinical samples at a tertiary care Centre in South India. Indian Journal of Microbiology Research. 2016; 3(1): 53-7. DOI: 10.5958/2394-5478.2016.00014.5. [DOI:10.5958/2394-5478.2016.00014.5]
4. 4) Jalal M, Ansari MA, Ali SG, Khan HM, Rehman S. Anticandidal activity of bioinspired ZnO NPs: effect on growth, cell morphology and key virulence attributes of Candida species. Artificial Cells, Nanomedicine, and Biotechnology. 2018; 46: 912-25. DOI: 10.1080/21691401.2018.1439837. [DOI:10.1080/21691401.2018.1439837]
5. 5) Nabavizadeh M, Abbaszadegan A, Gholami A, Kadkhoda Z, Mirhadi H, Ghasemi Y, et al. Antibiofilm efficacy of positively charged imidazolium-based silver nanoparticles in Enterococcus faecalis using quantitative real-time PCR. Jundishapur Journal of Microbiology. 2017; 10(10): 1-7. DOI: 10.5812/jjm.55616. [DOI:10.5812/jjm.55616]
6. 6) Frederick MR, Kuttler C, Hense BA, Eberl HJ. A mathematical model of quorum sensing regulated EPS production in biofilm communities. Theoretical Biology and Medical Modelling. 2011; 8(1): 8. DOI: 10.1186/1742-4682-8-8. [DOI:10.1186/1742-4682-8-8]
7. 7) Song T, Duperthuy M, Wai S. Sub-optimal treatment of bacterial biofilms. Antibiotics. 2016; 5(2): 23. DOI: 10.3390/antibiotics5020023. [DOI:10.3390/antibiotics5020023]
8. 8) Nett JE, Cain MT, Crawford K, Andes DR. Optimizing a Candida biofilm microtiter plate model for measurement of antifungal susceptibility by tetrazolium salt assay. Journal of clinical microbiology. 2011; 49(4): 1426-33. DOI: 10.1128/JCM.02273-10. [DOI:10.1128/JCM.02273-10]
9. 9) Pelgrift RY, Friedman AJ. Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced drug delivery reviews. 2013; 65(13-14): 1803-15. https://doi.org/10.1016/j.addr.2013.07.011 [DOI:10.1016/j.addr.2013.07.011.]
10. 10) Singh M, Manikandan S, Kumaraguru AK. Nanoparticles: a new technology with wide applications. Research Journal of Nanoscience and Nanotechnology. 2011; 1(1): 1-11. DOI: 10.3923/rjnn.2011.1.11. [DOI:10.3923/rjnn.2011.1.11]
11. 11) Grigore ME, Biscu ER, Holban AM, Gestal MC, Grumezescu AM. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals. 2016; 9(4): 75. DOI: 10.3390/ph9040075. [DOI:10.3390/ph9040075]
12. 12) Xu J-K, Zhang F-F, Sun J-J, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules. 2014; 19(12): 21506-28. DOI: 10.3390/molecules191221506 [DOI:10.3390/molecules191221506]
13. 13) Niemirowicz K, Bucki R. Enhancing the fungicidal activity of antibiotics: are magnetic nanoparticles the key?. Future Medicine. 2017; 12(15): 1747-49. DOI: 10.2217/nnm-2017-0051. [DOI:10.2217/nnm-2017-0051]
14. 14) Prabhu YT, Rao KV, Kumari BS, Kumar VS, Pavani T. Synthesis of Fe 3 O 4 nanoparticles and its antibacterial application. International Nano Letters. 2015; 5(2): 85-92. DOI: 10.1007/s40089-015-0141-z. [DOI:10.1007/s40089-015-0141-z]
15. 15) Yang T, Shen C, Li Z, Zhang H, Xiao C, Chen S, et al. Highly ordered self-assembly with large area of Fe3O4 nanoparticles and the magnetic properties. The Journal of Physical Chemistry B. 2005; 109(49): 23233-6. DOI: 10.1021/jp054291f. [DOI:10.1021/jp054291f]
16. 16) Wayne PA. CLSI. References Method for Broth Dilution Antifungal SusceptibulityTesting of Yeasts. 4th ed. CLSI Standard M27.: Clinical and Laboratory Standards Institute. 2017.
17. 17) Liao RS, Rennie RP, Talbot JA. Novel fluorescent broth microdilution method for fluconazole susceptibility testing of Candida albicans. Journal of Clinical Microbiology. 2001; 39(7): 2708-12. DOI: 10.1128/JCM.39.7.2708-2712.2001. [DOI:10.1128/JCM.39.7.2708-2712.2001]
18. 18) Zhang Y, Chen Y-y, Huang L, Chai Z-g, Shen L-J, Xiao Y-h. The antifungal effects and mechanical properties of silver bromide/cationic polymer nano-composite- modified Poly-methyl methacrylate-based dental resin. Scientific reports. 2017; 7(1): 1547. DOI: 10.1038/s41598-017-01686-4. [DOI:10.1038/s41598-017-01686-4]
19. 19) Agarwal R, Singh S, Bhilegaonkar K, Singh V. Optimization of microtitre plate assay for the testing of biofilm formation ability in different Salmonella serotypes. International Food Research Journal. 2011; 18(4): 1493-98.
20. 20) Nyenje ME, Green E, Ndip RN. Biofilm formation and adherence characteristics of Listeria ivanovii strains isolated from ready-to-eat foods in Alice, South Africa. ScientificWorldJournal. 2012;2012:873909. doi: 10.1100/2012/873909. [DOI:10.1100/2012/873909]
21. 21) Namasivayam SKR, Preethi M, Bharani A, Robin G, Latha B. Biofilm inhibitory effect of silver nanoparticles coated catheter against Staphylococcus aureus and evaluation of its synergistic effects with antibiotics. International Journal of Biological & Pharmaceutical Research. 2012; 3(2): 259-65.
22. 22) Thukkaram M, Sitaram S, Subbiahdoss G. Antibacterial efficacy of iron-oxide nanoparticles against biofilms on different biomaterial surfaces. International Journal of biomaterials. 2014; 201: 1-6. http://dx.doi.org/10.1155/2014/716080. [DOI:10.1155/2014/716080]
23. 23) Petri-Fink A, Hofmann H. Superparamagnetic Iron Oxide Nanoparticles (SPIONs): From Synthesis to in vivo studies-A Summary of Synthesis, Characterization, In Vito, and In Vivo Investigations of SPIONs With Particular Focus on Surface and Colloidal Properties. IEEE transactions on nanobioscience. 2007; 6(4): 289-97. DOI: 10.1109/TNB.2007.908987 [DOI:10.1109/TNB.2007.908987]
24. 24) Seabra AB, Haddad P, Duran N. Biogenic synthesis of nanostructured iron compounds: applications and perspectives. IET nanobiotechnology. 2013; 7(3): 90-9. DOI: 10.1049/iet-nbt.2012.0047. [DOI:10.1049/iet-nbt.2012.0047]
25. 25) Shi S-f, Jia J-f, Guo X-k, Zhao Y-p, Chen D-s, Guo Y-y, et al. Reduced Staphylococcus aureus biofilm formation in the presence of chitosan-coated iron oxide nanoparticles. International Journal of Nanomedicine. 2016; 11: 6499-6506. DOI: 10.2147/IJN.S41371. [DOI:10.2147/IJN.S41371]
26. 26) Amiri M, Etemadifar Z, Daneshkazemi A, Nateghi M. Antimicrobial effect of copper oxide nanoparticles on some oral bacteria and Candida species. Journal of Dental Biomaterials. 2017; 4(1): 347-52. PMID: 28959764.
27. 27) Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine. 2010; 5: 277-83. https://doi.org/10.2147/IJN.S9220 [DOI:10.2147/IJN.S9220.]
28. 28) Nasrollahi A, Pourshamsian K, Mansourkiaee P. Antifungal activity of silver nanoparticles on some of fungi. International Journal of Nano Dimension. 2011; 1(3): 233-39. DOI: 10.7508/ijnd.2010.03.007.
29. 29) Karimiyan A, Najafzadeh H, Ghorbanpour M, Hekmati-Moghaddam SH. Antifungal effect of magnesium oxide, zinc oxide, silicon oxide and copper oxide nanoparticles against Candida albicans. Zahedan Journal of Research in Medical Science. 2015; 17(10): 1-3. DOI: 10.17795/zjrms-2179. [DOI:10.17795/zjrms-2179]
30. 30) Shoeb M, Singh BR, Khan JA, Khan W, Singh BN, Singh HB, et al. ROS-dependent anticandidal activity of zinc oxide nanoparticles synthesized by using egg albumen as a biotemplate. Advances in Natural Sciences: Nanoscience and Nanotechnology. 2013; 4(3): 035015. DOI: 10.1088/2043-6262/4/3/035015 [DOI:10.1088/2043-6262/4/3/035015]
31. 31) Farias IAP, Santos CCLD, Sampaio FC. Antimicrobial activity of cerium oxide nanoparticles on opportunistic microorganisms: a systematic review. Biomed Research International. 2018; 3: 1-14. [DOI:10.1155/2018/1923606]
32. 32) Ramasamy M, Lee J. Recent nanotechnology approaches for prevention and treatment of biofilm-associated infections on medical devices. BioMed Research International. 2016: 1-17. http://dx.doi.org/10.1155/2016/1851242 [DOI:10.1155/2016/1851242]
33. 33) Halbandge SD, Mortale SP, Karuppayil SM. Biofabricated silver nanoparticles synergistically activate amphotericin B against mature biofilm forms of Candida albicans. The Open Nanomedicine Journal. 2017; 4(1): 1-16. DOI: 10.2174/1875933501704010001 [DOI:10.2174/1875933501704010001]
34. 34) Abd ST, Ali AF. Effect of zinc oxide nanoparticles on Candida albicans of human saliva (in vitro study). European Journal of Medicine. 2015; 4(6): 1892-1900. DOI: 10.13187/ejm.2015.10.235. [DOI:10.13187/ejm.2015.10.235]
35. 35) Ardestani ZS, Falahati M, Alborzi SS, Khozani MA, Khani FR, Bahador A. The effect of nanochitosans particles on Candida biofilm formation. Current Medical Mycology. 2016; 2(2): 28-33. doi: 10.18869/acadpub.cmm.2.2.1. [DOI:10.18869/acadpub.cmm.2.2.1]
36. 36) Cremonini E, Zonaro E, Donini M, Lampis S, Boaretti M, Dusi S, et al. Biogenic selenium nanoparticles: characterization, antimicrobial activity and effects on human dendritic cells and fibroblasts. Microbial biotechnology. 2016; 9(6): 758-71. DOI: 10.1111/1751-7915.12374. [DOI:10.1111/1751-7915.12374]
37. 37) Yu Q, Li J, Zhang Y, Wang Y, Liu L, Li M. Inhibition of gold nanoparticles (AuNPs) on pathogenic biofilm formation and invation to host cells. Scientific Reports. 2016; 6: 26667. DOI: 10.1038/srep26667. [DOI:10.1038/srep26667]
38. 38) Taylor EN, Webster TJ. The use of superparamagnetic nanoparticles for prosthetic biofilm prevention. International Journal of Nanomedicine. 2009; 4: 145-52. DOI: 10.2147/IJN.S5976. [DOI:10.2147/IJN.S5976]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.