ABSTRACT

Background and Objectives: Staphylococcus aureus is a common cause of nosocomial infections. The ability of S. aureus to form biofilm and acquire antimicrobial resistance has made this organism a major health problem. In this study, we investigate the biofilm-forming ability of S. aureus isolates from clinical samples.

Methods: Sixty S. aureus isolates from clinical specimens were collected from the 5th Azar Hospital of Gorgan (Iran) in 2018. The isolates were identified using conventional methods including Gram staining and biochemical tests (catalase and coagulase). Biofilm formation by S. aureus isolates was evaluated using a microplate-based method.

Results: Of 60 S. aureus isolates, 47 (78.3%) strains were identified as biofilm-forming and 13 (21.7%) strains were non-biofilm-forming.

Conclusion: The high prevalence of biofilm-producing S. aureus isolates in the 5th Azar hospital of Gorgan could pose a major health challenge with serious consequences for hospitalized patients. Therefore, it is crucial to disinfect and sterilize hospital surfaces and equipment effectively to minimize the risk of contamination and spread of bacteria in the hospital settings.

Keywords: Biofilms, Staphylococcus aureus, sample.
INTRODUCTION

Hospital infections are a global health problem associated with a variety of factors. Since the 1980s, Gram-positive bacteria, especially Staphylococcus aureus, have been considered as the main cause of hospital infections (1). The ability of S. aureus to form biofilm and acquire antimicrobial resistance has made this organism a major health problem (2). The bacterium causes a variety of infections, including bacteremia, septicemia, pneumonia, as well as skin, soft tissue and bone infections (3-4). These bacteria are catalase-positive, non-spore forming and often lack capsule. They can grow in different environmental conditions and are the second most common cause of nosocomial infections (5).

Biofilm formation is associated with increased resistance to antibiotics and host defense systems (6). Bacteria within the biofilm are surrounded by extracellular polymeric substances (7). Given the importance of S. aureus infections in hospitals and the associated risk of mortality (8), we aimed to study biofilm formation ability in S. aureus isolates from clinical specimens.

MATERIALS AND METHODS

The study was carried out on 60 S. aureus clinical isolates that were collected from the 5th Azar Hospital of Gorgan (Iran) in 2018. The isolates were identified using conventional methods such as Gram staining, biochemical tests (catalase and coagulase) and mammot fermentation or DNase test if necessary (9). The biofilm-forming ability of S. aureus isolates was studied using a microtiter plate based crystal violet assay. First, 24-hour culture of each bacterial isolate was inoculated into Mueller-Hinton agar and Tryptic soy broth containing 1% glucose. After incubation at 37 °C and obtaining a turbidity equivalent to the McFarland 0.5 standard (or 0.1-0.8% absorbance at 570 nm), 200 μl of bacterial suspension were inoculated into wells of a polystyrene 96-well plate. Wells containing the medium alone were considered as negative controls. S. aureus ATCC 35556 was used as the positive control (10). To visualize biofilms, 200 μl of crystalline violet (2%) were added to each well. After five minutes, excess dye was discarded and the well was washed with 200 μl of phosphate buffered saline (PBS) three times. The dye incorporated by the biofilm-forming cells was dissolved by treatment with 200 μl of ethanol-acetone (80: 20%) for 30 minutes. Absorbance of each well at 570 nm was measured by an ELISA plate reader. A semi-quantitative study of biofilm formation was carried out using cut-off (OD570) values according to a method described previously (11, 12). The cut-off OD (ODc) was defined as three standard deviations above the mean OD of the negative control. All absorbance measurements were carried out in triplicate. Table 1 presents classification of the isolates in terms of biofilm formation based on the obtained ODc.

Table 1- Classification of the isolates in terms of biofilm-forming ability based on the microtiter-plate method

<table>
<thead>
<tr>
<th>Biofilm formation ability</th>
<th>Cut-off rate</th>
<th>Mean (maximum OD absorption)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong</td>
<td>OD > 2×ODc</td>
<td>OD > 1.2</td>
</tr>
<tr>
<td>Moderate</td>
<td>2×ODc < OD ≤ 4×ODc</td>
<td>0.7 < OD ≤ 1.2</td>
</tr>
<tr>
<td>Weak</td>
<td>ODc < OD ≤ 2×ODc</td>
<td>0.3 < OD ≤ 0.6</td>
</tr>
<tr>
<td>Non-biofilm-forming</td>
<td>OD < cut off</td>
<td>OD ≤ 0.3</td>
</tr>
</tbody>
</table>

DISCUSSION

Biofilm acts as an important virulence factor for S. aureus by facilitating adhesion of the bacteria to various surfaces and increasing resistance to antimicrobial agents. Hence, infections caused by biofilm-forming S. aureus strains in hospitals are recognized as a major health challenge (13). The increased antibiotic resistance in these bacteria is mainly due to the presence of large quantity of extracellular polysaccharides in the biofilm that provides a favorable condition for the slow growth of
bacteria (14). In our study, 78.3% of the isolates were identified as biofilm forming, which is alarming. In a study by Wang et al. (2012) in China, 66% of the isolates were considered biofilm producers (15). In Ireland, the prevalence of biofilm-forming bacteria was 61.4% among clinical isolates (9). In Germany, 67% of isolates from blood samples and 47% of isolates from urinary tract infections were biofilm producers (8). In a study in the United States, 57% of the strains isolated from blood samples were able to adhere to polystyrene surfaces (16).

CONCLUSION

The high prevalence of biofilm-producing S. aureus isolates in the 5th Azar hospital of Gorgan could pose a major health challenge with serious consequences for hospitalized patients. Therefore, it is crucial to disinfect and sterilize hospital surfaces and equipment effectively to minimize the risk of contamination and spread of bacteria in the hospital settings.

REFERENCES

ACKNOWLEDGMENTS

The study has been financially supported by the Infectious Disease and Medical Laboratory Sciences Research Center of the Golestan University of Medical Sciences. Iran (No: IR.GOUMS.REC.1397.116).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this article.